Answer:
Step-by-step explanation:
A regular polygon is a shape with equal sides and angles. Because of this, we can write the following equation to set two sides equal to each other:
Solving, we will get a in terms of b:
Now we can substitute a for (b+3) into our equation:
Therefore, the length of each side of this polygon is .
Since the perimeter of the polygon consists of all five sides, the perimeter is:
Question 9 answer is 0.375
Question 10 answer is 0.03125
Given:
Measure of a cube = 1 unit on each side.
Dimensions of a space 2 units by 3 units by 4 units.
To find:
Number of cubes that can be fit into the given space.
Solution:
The volume of cube is:
Where, a is the side length of cube.
So, the volume of the cube is 1 cubic units.
The volume of the cuboid is:
Where, l is length, w is width and h is height.
Putting , we get
So, the volume of the space is 24 cubic units.
We need to divide the volume of the space by the volume of the cube to find the number of cubes that can be fit into the given space.
Therefore, 24 cubes can be fit into the given space.
Answer:
$68.52
Step-by-step explanation:
$3.57 Is the tax he pays
This is quite a complex problem. I wrote out a really nice solution but I can't work out how to put it on the website as the app is very poorly made. Still, I'll just have to type it all in...
Okay so you need to use a technique called logarithmic differentiation. It seems quite unnatural to start with but the result is very impressive.
Let y = (x+8)^(3x)
Take the natural log of both sides:
ln(y) = ln((x+8)^(3x))
By laws of logarithms, this can be rearranged:
ln(y) = 3xln(x+8)
Next, differentiate both sides. By implicit differentiation:
d/dx(ln(y)) = 1/y dy/dx
The right hand side is harder to differentiate. Using the substitution u = 3x and v = ln(x+8):
d/dx(3xln(x+8)) = d/dx(uv)
du/dx = 3
Finding dv/dx is harder, and involves the chain rule. Let a = x+ 8:
v = ln(a)
da/dx = 1
dv/da = 1/a
By chain rule:
dv/dx = dv/da * da/dx = 1/a = 1/(x+8)
Finally, use the product rule:
d/dx(uv) = u * dv/dx + v * du/dx = 3x/(x+8) + 3ln(x+8)
This overall produces the equation:
1/y * dy/dx = 3x/(x+8) + 3ln(x+8)
We want to solve for dy/dx, achievable by multiplying both sides by y:
dy/dx = y(3x/(x+8) + 3ln(x+8))
Since we know y = (x+8)^(3x):
dy/dx = ((x+8)^(3x))(3x/(x+8) + 3ln(x+8))
Neatening this up a bit, we factorise out 3/(x+8):
dy/dx = (3(x+8)^(3x-1))(x + (x+8)ln(x+8))
Well wasn't that a marathon? It's a nightmare typing that in, I hope you can follow all the steps.
I hope this helped you :)