Inside the bar magnet, the magnetic field points from north to south. Statement A is correct.
Magnetic Field:
It is defined as a vector field or the influence of the magnet on the electric current, charges and ferromagnetic substance.
The strength of magnetic field is depends up on the numbers of magnetic field lines per unit area.
- Magnetic field lines emerge from the North pole and end in the South pole of a bar magnet.
- Inside the magnet are also present inside the bar magnet and never intersect at any point.
Therefore, inside the bar magnet, the magnetic field points from north to south.
To know more about Magnetic Field:
brainly.com/question/19542022
Answer:
A. Increasing the voltage of the battery
Explanation:
The relationship between voltage, V, current, I and resistance, R, is given as follows;
V = I × R
∴ I = V/R
From the above relationship, the current flowing in the circuit is directly proportional to the voltage of the battery, and inversely proportional to the resistance, 'R', of the circuit
Therefore, increasing the voltage, 'V', of the battery, increases the total current, 'I', flowing in the circuit.
Answer:
(a) The range of the projectile is 31,813.18 m
(b) The maximum height of the projectile is 4,591.84 m
(c) The speed with which the projectile hits the ground is 670.82 m/s.
Explanation:
Given;
initial speed of the projectile, u = 600 m/s
angle of projection, θ = 30⁰
acceleration due to gravity, g = 9.8 m/s²
(a) The range of the projectile in meters;

(b) The maximum height of the projectile in meters;

(c) The speed with which the projectile hits the ground is;

Answer:2.47
Explanation:
So, the beaker weighs 1.40N when filled with water, brine of density weighs about 1.7N, you add the density + water. Have a good day!
Answer:
Explanation:
fundamental frequency, f = 250 Hz
Let T be the tension in the string and length of the string is l ans m be the mass of the string initially.
the formula for the frequency is given by
.... (1)
Now the length is doubled ans the tension is four times but the mass remains same.
let the frequency is f'
.... (2)
Divide equation (2) by equation (1)
f' = √2 x f
f' = 1.414 x 250
f' = 353.5 Hz