The time taken for the first p-wave to reach the same seismic station is approximately 13 minutes.
<h3>Time of travel of the P-wave</h3>
In rock, S waves generally travel about 60% the speed of P waves, and the S wave always arrives after the P wave.
<h3>Relationship between speed and time</h3>
v ∝ 1/t
v₁t₁ = v₂t₂
t₁/t₂ = v₂/v₁
t₁/t₂ = 0.6v₁/v₁
t₁/t₂ = 0.6
t₁ = 0.6t₂
t₁ = 0.6 x 22 mins
t₁ = 13.2 mins
Thus, the time taken for the first p-wave to reach the same seismic station is approximately 13 minutes.
Learn more about P-waves here: brainly.com/question/2552909
#SPJ1
The forces of attraction between water molecules and the glass walls and within the molecules of water themselves are what enable the water to rise in a thin tube immersed in water.
<h3>What is force?</h3>
Force is defined as the push or pulls applied to the body. Sometimes it is used to change the shape, size, and direction of the body.
Force is defined as the product of mass and acceleration. Its unit is Newton.
Surface or interfacial forces lead to capillarity. The forces of attraction between the water molecules and the glass walls and among the water molecules themselves are what causes the water in a thin tube submerged in water to rise.
Hence, the water rises up a thin capillary tube can be explained by Newton's third law.
To learn more about the force refer to the link;
brainly.com/question/26115859#SPJ1
#SPJ1
Answer: search it on browser
Because it's so much closer to us than any other star.
Answer:

Explanation:
The equivalent of Newton's second law for rotational motions is:

where
is the net torque applied to the object
I is the moment of inertia
is the angular acceleration
In this problem we have:
(net torque, with a negative sign since it is a friction torque, so it acts in the opposite direction as the motion)
is the moment of inertia
Solving for
, we find the angular acceleration:
