Answer:
0.147 billion years = 147.35 million years.
Explanation:
- It is known that the decay of a radioactive isotope isotope obeys first order kinetics.
- Half-life time is the time needed for the reactants to be in its half concentration.
- If reactant has initial concentration [A₀], after half-life time its concentration will be ([A₀]/2).
- Also, it is clear that in first order decay the half-life time is independent of the initial concentration.
- The half-life of Potassium-40 is 1.25 billion years.
- For, first order reactions:
<em>k = ln(2)/(t1/2) = 0.693/(t1/2).</em>
Where, k is the rate constant of the reaction.
t1/2 is the half-life of the reaction.
∴ k =0.693/(t1/2) = 0.693/(1.25 billion years) = 0.8 billion year⁻¹.
- Also, we have the integral law of first order reaction:
<em>kt = ln([A₀]/[A]),</em>
<em></em>
where, k is the rate constant of the reaction (k = 0.8 billion year⁻¹).
t is the time of the reaction (t = ??? year).
[A₀] is the initial concentration of (Potassium-40) ([A₀] = 100%).
[A] is the remaining concentration of (Potassium-40) ([A] = 88.88%).
- At the time needed to be determined:
<em>8 times as many potassium-40 atoms as argon-40 atoms. Assume the argon-40 only comes from radioactive decay.</em>
- If we start with 100% Potassium-40:
∴ The remaining concentration of Potassium-40 ([A] = 88.88%).
and that of argon-40 produced from potassium-40 decayed = 11.11%.
- That the ratio of (remaining Potassium-40) to (argon-40 produced from potassium-40 decayed) is (8: 1).
∴ t = (1/k) ln([A₀]/[A]) = (1/0.8 billion year⁻¹) ln(100%/88.88%) = 0.147 billion years = 147.35 million years.
The perfect word to fill the blank is carbohydrates. <span>Digestion breaks down carbohydrates into simpler substances that your body can use for raw materials and energy. Carbohydrates are from the food we eat and are used in the body to produce and supply energy.</span>
Because they can look at the fossils that they left behind and see what kind of animal it was and what happened to it if another animal is inside of the fossil or if the bones are misplaced
Electrical conductivity, electromagnetism, and temperature are the features that one would look for in order to determine plasma. Plasma refers to a hot ionized gas possessing high electrical conductivity. It is electrically neutral with negative and positive particles. It can be considered the most abundant form of matter in the universe.
The features of plasma are substantially distinct from those of the usual neutral gases so that plasmas are regarded as a different fourth state of matter.
<span>You can see mars in the night sky because it is a very bright planet. Mars is as bright, or brighter than the stars. Yes, all planets are pretty bright, but mars in beyond bright along with jupiter, mercury, etc. Hope this helped! :)</span>