Answer:
Hydrogen: -141 kJ/g
Methane: -55kJ/g
The energy released per gram of hydrogen in its combustion is higher than the energy released per gram of methane in its combustion.
Explanation:
According to the law of conservation of the energy, the sum of the heat released by the combustion and the heat absorbed by the bomb calorimeter is zero.
Qc + Qb = 0
Qc = -Qb [1]
We can calculate the heat absorbed by the bomb calorimeter using the following expression.
Q = C . ΔT
where,
C is the heat capacity
ΔT is the change in the temperature
<h3>Hydrogen</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (14.3°C) = -162 kJ
The heat released per gram of hydrogen is:

<h3>Methane</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (7.3°C) = -82 kJ
The heat released per gram of methane is:

The product of the nuclear reaction in which 31p is subjected to neutron capture followed by alpha emission is ²⁸Al.
Nuclear
reaction: ³¹P + n° → ²⁸Al + α (alpha particle).<span>
Alpha decay is radioactive decay in which an atomic
nucleus emits an alpha particle (helium nucleus) and transforms
into an atom with an atomic number that is reduced by
two and mass number that is reduced by four.</span>
<u>Answer:</u> The correct option is A) They have fixed energy values.
<u>Explanation:</u>
Electron is one of the sub-atomic particle present around the nucleus of an atom which is negatively charged.
In an atomic model, it is assumed that the electron revolves around the nucleus in discrete orbits having fixed energy levels.
These electrons when jumping from one energy level to another, some amount of radiation is either emitted or absorbed.
These fixed energy levels are given by the Bohr model and thus, the electrons are quantized.
Hence, the correct option is A) They have fixed energy values.
D. As more electrons are added to an element, the number of electron orbitals being filled increases