A reaction mechanism must ultimately be understood as a "blow-by-blow" description of the molecular-level events whose sequence leads from reactants to products. These elementary steps (also called elementary reactions) are almost always very simple ones involving one, two, or [rarely] three chemical species which are classified
It is common knowledge that chemical reactions occur more rapidly at higher temperatures. Everyone knows that milk turns sour much more rapidly if stored at room temperature rather than in a refrigerator, butter goes rancid more quickly in the summer than in the winter, and eggs hard-boil more quickly at sea level than in the mountains. For the same reason, cold-blooded animals such as reptiles and insects tend to be noticeably more lethargic on cold days.
Thermal energy relates direction to motion at the molecular level. As the temperature rises, molecules move faster and collide more vigorously, greatly increasing the likelihood of bond cleavages and rearrangements as described above.
Answer:
Cell membrane and cytoplasm
Explanation:
Cell membrane is the layer that surronds the cell and it is made up of lipids and proteins. It is made up of a kind of fatty acids based lipids i.e phospholipids and sterols.
Cytoplasm is a thick fluid that is found in the cell membranes. It acts as buffer and protect cells organelles and DNA from damage. It is made up of water, p, lipids, proteins, inorganic salts, nucleic acids.
It is energetically favorable for all atoms to have a complete outer
electron shell. Loosely, the atoms on the left hand side of the periodic
table only have a few extra electrons in their outer shell so it is
energetically favorable for them to lose them. The atoms on the right
hand side of the periodic table almost have enough electrons in their
outer shell and so they have a tendency to gain them.
Once electrons have left an electron shell, an atom will have a positive
charge because it has more protons (positive charges) than electrons
(negative charges). Similarly, an electron which has gained electrons to
complete its outer shell will have a negative charge because it now has
more electrons (negative charge) than protons (positive charge).
Answer:
Bromohydrin and chlorohydrin are examples of halohydrins (where X = Br or Cl).