Answer:
Physically, the gas constant is the constant of proportionality that relates the energy scale in physics to the temperature scale, when a mole of particles at the stated temperature is being considered. Thus, the value of the gas constant ultimately derives from historical decisions and accidents in the setting of the energy and temperature scales, plus similar historical setting of the value of the molar scale used for the counting of particles.
Explanation:
Pa follow
there were different outcomes each time.
Most common quantity of inertia is mass
The outer shell can hold 1 electron
Answer:
Explanation:
Hi!
In order to obtain the Lagrangian of the system we must first write the Kinetic and Potential Energies. Lets orient our axes such that the axis of the cone coincide with the z axis. In cilindrical coordinates we have
- (1)
But, since the particle is constrained to move on the surface of the cilinder, we have the following relation between r and z:

or:
- (2)
and:
replacing (2) in (1) we obtain:
- (3)
Now the kinetic energy is given as:
- (4)
And the potential energy is given by:

So the Langrangian is given by:

And the equations of motion are:
For θ

For r

Obtained from the Euler-Langrange equations
Here the conserved quantity is given by the first equation of motion, namely:

Which is the magnitude of the angular momentum