D,
lmk if this is right :)
Answer:
a) d = 7.62 10⁻⁶ m, b) l = 3.25 10⁴ m
Explanation:
Resistance is expressed by the formula
R = ρ l / A (1)
density is defined by
density = m / V
the volume of a wire is the cross section by the length
V = A l
we substitute
density = m / A l
A = m / density l
we substitute in 1
R = ρ l density l / m
R =ρ density l² / m
l = √ (R m /ρ density)
let's calculate the cable length
l = √(11.7 13.5 10⁻³ / (1.68 10⁻⁸ 8.9 10³))
l = √(10.56 10⁸)
l = 3.25 10⁴ m
now we can find the cable diameter with the density equation
A = m / density l
A = 13.5 10⁻³ / (8.9 10³ 3.25 10⁴)
A = 4,557 10⁻¹¹ m²
the area of the circle is
A = π r² = π d² / 4
d = √ (4A /π)
d = √ (4 4,557 10⁻¹¹/π)
d = 7.62 10⁻⁶ m
Answer:
a) Total mass form, density and axis of rotation location are True
b) I = m r²
Explanation:
a) The moment of inertia is the inertia of the rotational movement is defined as
I = ∫ r² dm
Where r is the distance from the pivot point and m the difference in body mass
In general, mass is expressed through density
ρ = m / V
dm = ρ dV
From these two equations we can see that the moment of inertia depends on mass, density and distance
Let's examine the statements, the moment of inertia depends on
- Linear speed False
- Acceleration angular False
- Total mass form True
- density True
- axis of rotation location True
b) we calculate the moment of inertia of a particle
For a particle the mass is at a point whereby the integral is immediate, where the moment of inertia is
I = m r²