Answer:
The average emf induced in the coil is 175 mV
Explanation:
Given;
number of turns of the coil, N = 1060 turns
diameter of the coil, d = 20.0 cm = 0.2 m
magnitude of the magnetic field, B = 5.25 x 10⁻⁵ T
duration of change in field, t = 10 ms = 10 x 10⁻³ s
The average emf induced in the coil is given by;

where;
A is the area of the coil
A = πr²
r is the radius of the coil = 0.2 /2 = 0.1 m
A = π(0.1)² = 0.03142 m²

Therefore, the average emf induced in the coil is 175 mV
Answer:
-6.0 m/s, 10.4 m/s
Explanation:
To find the x- and y- components, we have to apply the formulas:


where
v = 12.0 m/s is the magnitude of the vector
is the angle between the direction of the vector and the positive x-axis
Here, the angle given is the angle above the negative x-axis; this means that the angle with respect to the positive x-axis is

So, the two components are:


Kinetic energy is energy of motion. If the object is sitting still, then it has no kinetic energy. It doesn't matter what its mass is, or how high the shelf is.
KE = 0