1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Whitepunk [10]
3 years ago
9

A 5.0-kg centrifuge takes 95 s to spin up from rest to its final angular speed with constant angular acceleration. A point locat

ed 6.00 cm from the axis of rotation of the centrifuge with a speed of 99 m/s when the centrifuge is at full speed moves (a) What is the angular acceleration (in rad/s2) of the centrifuge as it spins up? (b) How many revolutions does the centrifuge make as it goes from rest to its final angular speed?
Physics
1 answer:
stellarik [79]3 years ago
4 0

Answer:

(a) 17.37 rad/s^2

(b) 12479

Explanation:

t = 95 s, r = 6 cm = 0.06 m, v = 99 m/s, w0 = 0

w = v / r = 99 / 0.06 = 1650 rad/s

(a) Use first equation of motion for rotational motion

w = w0 + α t

1650 = 0 + α x 95

α = 17.37 rad/s^2

(b) Let θ be the angular displacement

Use third equation of motion for rotational motion

w^2 = w0^2 + 2 α θ

1650^2 = 0 + 2 x 17.37 x θ

θ = 78367.87 rad

number of revolutions, n = θ / 2 π

n = 78367.87 / ( 2 x 3.14)

n = 12478.9 ≈ 12479

You might be interested in
A 50-cm-long spring is suspended from the ceiling. A 330 g mass is connected to the end and held at rest with the spring unstret
Nataly [62]

Answer:

a)32.34 N/m

b)10cm

c)1.6 Hz

Explanation:

Let 'k' represent spring constant

'm' mass of the object= 330g =>0.33kg

a) in order to find spring constant 'k', we apply Newton's second law to the equilibrium position 10cm below the release point.

ΣF=kx-mg=0

k=mg / x

k= (0.33 x 9.8)/ 0.1

k= 32.34 N/m

b) The amplitude, A, is the distance from the equilibrium (or center) point of motion to either its lowest or highest point (end points). The amplitude, therefore, is half of the total distance covered by the oscillating object.

Therefore, amplitude of the oscillation is 10cm

c)frequency of the oscillation can be determined by,

f= 1/2π \sqrt{\frac{k}{m} }

f= 1/2π \sqrt{\frac{32.34}{0.33} }

f= 1.57

f≈ 1.6 Hz

Therefore,  the frequency of the oscillation is 1.6 Hz

5 0
4 years ago
(a) (i) Find the gradient of f. (ii) Determine the direction in which f decreases most rapidly at the point (1, −1). At what rat
vitfil [10]

Question:

Problem 14. Let f(x, y) = (x^2)y*(e^(x−1)) + 2xy^2 and F(x, y, z) = x^2 + 3yz + 4xy.

(a) (i) Find the gradient of f.

(ii) Determine the direction in which f decreases most rapidly at the point (1, −1). At what rate is f decreasing?

(b) (i) Find the gradient of F.

(ii) Find the directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2 i + 3 j − √ 3 k.

Answer:

The answers to the question are

(a) (i)  the gradient of f =  ((y·x² + 2·y·x)·eˣ⁻¹ + 2·y² )i + (x²·eˣ⁻¹+4·y·x) j

(ii) The direction in which f decreases most rapidly at the point (1, −1), ∇f(x, y) = -1·i -3·j is the y direction.

The rate is f decreasing is -3 .

(b) (i) The gradient of F is (2·x+4·y)i + (3·z+4·x)j + 3·y·k

(ii) The directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2 i + 3 j − √ 3 k is  ñ∙∇F =  4·x +⅟4 (8-3√3)y+ 9/4·z at (1, 1, −5)

4 +⅟4 (8-3√3)+ 9/4·(-5) = -6.549 .

Explanation:

f(x, y) = x²·y·eˣ⁻¹+2·x·y²

The gradient of f = grad f(x, y) = ∇f(x, y) = ∂f/∂x i+  ∂f/∂y j = = (∂x²·y·eˣ⁻¹+2·x·y²)/∂x i+  (∂x²·y·eˣ⁻¹+2·x·y²)/∂y j

= ((y·x² + 2·y·x)·eˣ⁻¹ + 2·y² )i + (x²·eˣ⁻¹+4·y·x) j

(ii) at the point (1, -1) we have  

∇f(x, y) = -1·i -3·j  that is the direction in which f decreases most rapidly at the point (1, −1) is the y direction.  

The rate is f decreasing is -3

(b) F(x, y, z) = x² + 3·y·z + 4·x·y.

The gradient of F is given by grad F(x, y, z)  = ∇F(x, y, z) = = ∂f/∂x i+  ∂f/∂y j+∂f/∂z k = (2·x+4·y)i + (3·z+4·x)j + 3·y·k

(ii) The directional derivative of F at the point (1, 1, −5) in the direction of the vector a = 2·i + 3·j −√3·k

The magnitude of the vector 2·i +3·j -√3·k is √(2²+3²+(-√3)² ) = 4, the unit vector is therefore  

ñ = ⅟4(2·i +3·j -√3·k)  

The directional derivative is given by ñ∙∇F = ⅟4(2·i +3·j -√3·k)∙( (2·x+4·y)i + (3·z+4·x)j + 3·y·k)  

= ⅟4 (2((2·x+4·y))+3(3·z+4·x)- √3∙3·y) = 4·x +⅟4 (8-3√3)y+ 9/4·z at point (1, 1, −5) = -6.549

8 0
3 years ago
During intercourse, Lydia constantly worries whether her partner thinks she is
Misha Larkins [42]
Answer is c spectatoring
6 0
3 years ago
In a car, 75 percent of the chemical energy of gasoline is lost as thermal
LenaWriter [7]
821
s
s
s
s
s
s
s
s
s
s
s
s
ws
asd
asd
asd
asd
ad
a
sda
d
≥≡³

3 0
4 years ago
Elemental analysis of the unknown gas from part a revealed that it is 30.45% n and 69.55% o by mass. What is the molecular formu
Anna71 [15]

Answer:

the molecular formula for the gas is NO₂

Explanation:

since it contains

Nitrogen = n → 30.45%

Oxygen = o → 69.55%

and 30.45%+69.55% = 100% , then the gas only contains nitrogen and oxygen

Also we know that the proportion of oxygen over nitrogen  is

proportion of oxygen over nitrogen  = moles of oxygen / moles of nitrogen

since

moles = mass / molecular weight

then for a sample of 100 gr of the unknown gas

mass of oxygen = 69.55%*100 gr = 69.55 gr

mass of Nitrogen = 30.45%*100 gr = 30.45 gr

proportion of oxygen over nitrogen = (mass of oxygen/ molecular weight)/(mass of nitrogen / molecular weight of nitrogen ) =  (69.55 gr/ 16 gr/mol) /( 30.45 gr /14 gr/mol) = 1.998 mol of O/ mol of N≈ 2 mol of O/ mol of N

therefore there are 2 atoms of oxygen per atom of nitrogen

thus the molecular formula for the gas is:

NO₂

6 0
3 years ago
Other questions:
  • The slope of a distance vs. time graph is a measurement called
    10·1 answer
  • Refrigerant-134a enters the condenser of a residential heat pump at 800 kPA and 35oC at a rate of 0.018 kg/s and leaves at 800 k
    15·1 answer
  • Supervisors are subject to disciplinary action for engaging in retaliation.<br> True<br> False
    9·1 answer
  • A playground is on the flat roof of a city school, 6.2m above the street below. The vertical wall of the building is h=7.30m hig
    10·1 answer
  • A car is traveling at 40 m/s for 20 seconds. How far did it travel in this time?
    6·1 answer
  • Emerging adults are typically financially independent from their parents.<br> True or false?
    9·2 answers
  • A student uses an audio oscillator of adjustable frequency to measure the depth of a water well. The student reports hearing two
    7·1 answer
  • Calculate ine gravitational potential energy of the ball using pe=m×g×h.(use g=9.8 n/kg)
    15·1 answer
  • 2)
    7·1 answer
  • There are many muscles in our body. our body uses muscles to move parts of our body. a part that needs to move a lot will have a
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!