Answer:
1.14atm
Explanation:
Given parameters:
V1 = 250cm³ ;
1000cm³ = 1dm³; so this is 0.25dm³
P1 = 760torr
760torr = 1atm
V2 = 220cm³ ; 0.22dm³
Unknown:
New pressure = ?
Solution:
To solve this problem, we apply Boyle's law and we use the expression below:
P1 V1 = P2V2
The unknown is P2;
1 x 0.25 = P2 x 0.22
P2 = 1.14atm
Answer:
B. 111 J
Explanation:
The change in internal energy is the sum of the heat absorbed and the work done on the system:
ΔU = Q + W
At constant pressure, work is:
W = P ΔV
Given:
P = 0.5 atm = 50662.5 Pa
ΔV = 4 L − 2L = 2 L = 0.002 m³
Plugging in:
W = (50662.5 Pa) (0.002 m³)
W = 101.325 J
Therefore:
ΔU = 10 J + 101.325 J
ΔU = 111.325 J
Rounded to three significant figures, the change in internal energy is 111 J.
Answer:
Itś A) The water in pot X has more kinetic energy than the water in pot Y.
Explanation:
Did it on a quiz
ed2020
Its D for plato.
by other people who asked
Molar volume is a property of a component in a solution. It is defined as the volume occupied by one mole of the component in the closed system. You would not expect all solutions to execute volume additivity because intermolecular forces between the components come into play. There is no such thing as conservation of volume.
Vapor pressure affects molar volume because gases are very sensitive by these process conditions. Vapor pressure is very temperature-dependent. Consequently, at a different temperature, your component could expand or compress, thus, affecting the molar volume. Moreover, the pressure affects the molecular collisions in the system.