Answer:
Explanation:
A 12.48 g sample of an unknown metal, heated to 99.0 °C was then plunged into 50.0 mL of 25.0 °C water. The temperature of the water rose to 28.1 Go to calculating final temperature when mixing two samples of water ... Problem #1: A 610. g piece of copper tubing is heated to 95.3 °C and placed in an ... The two rings are heated to 65.4 °C and dropped into 12.4 mL of water at 22.3 °C. ... Problem #4: A 5.00 g sample of aluminum (specific heat capacity = 0.89 J g¯1
The grams of water produced is c
Answer:
1.7 bar
Explanation:
We can use the <em>Ideal Gas Law</em> to calculate the individual gas pressure.
pV = nRT Divide both sides by V
p = (nRT)/V
Data: n = 1.7 × 10⁶ mol
R = 0.083 14 bar·L·K⁻¹mol⁻¹
T = 22 °C
V = 2.5 × 10⁷ L
Calculations:
(a) <em>Change the temperature to kelvins
</em>
T = (22 + 273.15) K
= 295.15 K
(b) Calculate the pressure
p = (1.7 × 10⁶ × 0.083 14 × 295.15)/(2.5× 10⁷)
= 1.7 bar
Answer: Option (a) is the correct answer.
Explanation:
A miscible solution is defined as the one in which two or more than two components are soluble with each other.
So, when hexane is added to heptane then both of them will mix with each other and hence they are miscible. This mixing will lead to formation of more number of ions into the solution as a result, more will be the disorder present in the solution.
As entropy is the degree of randomness present.
Hence, we can conclude that a solution of hexane and heptane will lead to an increase in entropy.
Answer:
A
Explanation:
energy stored in chemical bonds of molecules