Answer:
C
Explanation:
acids are corrosive since they tend to destroy every single thing they do get a big example is the acidic rain which tends to corrode iron sheet thus making them to appear worn out and full of rust
Answer:
Explanation:
Combustion. Have fun with that.
There are several information's already given in the question. Based on those information's, the answer can be easily deduced.
Amount of gasoline required by Harry's car to travel 25 miles = 1 gallon
Then
amount of gasoline required
by Harry's car to travel 15000 miles = 15000/25
= 600 gallons
So
Amount of CO2 released by burning 1 gallon of gasoline = 20 pounds
Then
Amount of CO2 released
by burning 600 gallon of gasoline = 600 * 20
= 12000 pounds
From the above deduction, it can be concluded that the amount of CO2 that will be added by Harry's car to the atmosphere is 12000 pounds.
Pressure given by:
Pressure=(force)/(area)
Force=Mass*gravitational pull
Mass=34Kg
gravity=9.80
so,
force=34*9.8=333.2
thus;
pressure=333.2/25=13.328=13.3 N/cm^2
Hope this helped :)
Answer:
[Ag⁺] = 5.0x10⁻¹⁴M
Explanation:
The product solubility constant, Ksp, of the insoluble salts PbI₂ and AgI is defined as follows:
Ksp(PbI₂) = [Pb²⁺] [I⁻]² = 1.4x10⁻⁸
Ksp(AgI) = [Ag⁺] [I⁻] = 8.3x10⁻¹⁷
The PbI₂ <em>just begin to precipitate when the product [Pb²⁺] [I⁻]² = 1.4x10⁻⁸</em>
<em />
As the initial [Pb²⁺] = 0.0050M:
[Pb²⁺] [I⁻]² = 1.4x10⁻⁸
[0.0050] [I⁻]² = 1.4x10⁻⁸
[I⁻]² = 1.4x10⁻⁸ / 0.0050
[I⁻]² = 2.8x10⁻⁶
<h3>[I⁻] = 1.67x10⁻³</h3><h3 />
So, as the [I⁻] concentration is also in the expression of Ksp of AgI and you know concentration in solution of I⁻ = 1.67x10⁻³M:
[Ag⁺] [I⁻] = 8.3x10⁻¹⁷
[Ag⁺] [1.67x10⁻³] = 8.3x10⁻¹⁷
<h3>[Ag⁺] = 5.0x10⁻¹⁴M</h3>