1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna007 [38]
2 years ago
8

If you calculate the thermal power radiated by typical objects at room temperature, you will find surprisingly large values, sev

eral kilowatts typically. For example, a square box that is 1 m on each side and painted black (therefore justifying an emissivity e near unity) emits 2.5 kW at a temperature of 20∘C. In reality the net thermal power emitted by such a box must be much smaller than this, or else the box would cool off quite quickly. Which of the following alternatives seems to explain this conundrum best?A. The box is black only in the visible spectrum; in the infrared (where it radiates) it is quite shiny and radiates little power.
B. The surrounding room is near the temperature of the box and radiates about 2.5 kW of thermal energy into the box.
C. Both of the first two factors contribute significantly.
D. Neither of the first two factors is the explanation.
Physics
1 answer:
OverLord2011 [107]2 years ago
5 0

Answer:

best explanation of this is sentence B

Explanation:

The radiation emission of the bodies is given by the expression

     P = σ A e T⁴

Where P is the power emitted in watts, σ is the Stefan-Boltzmann constant, A is the surface area of ​​the body, e is the emissivity for black body e = 1 and T is the absolute body temperature in degrees Kelvin.

When the values ​​are substituted the power is quite high 2.5 KW, but the medium surrounding the box also emits radiation

   T box ≈ T room

    P box ≈ P room

As the two powers are similar and the box can absorbed, since it has the ability to emit and absorb radiation, as the medium is also close of the temperature of the box, the amount emitted is very similar to that absorbed, so the net change in energy is very small.

   In the case that the box is much hotter or colder than the surrounding medium if there is a significant net transfer.

Consequently, the best explanation of this is sentence B

You might be interested in
What amount of heat is required to raise the temperature of 25 grams of copper to cause a 15ºC change? The specific heat of copp
Lina20 [59]

The amount of heat required is B) 150 J

Explanation:

The amount of heat energy required to increase the temperature of a substance is given by the equation:

Q=mC\Delta T

where:

m is the mass of the substance

C is the specific heat capacity of the substance

\Delta T is the change in temperature of the substance

For the sample of copper in this problem, we have:

m = 25 g (mass)

C = 0.39 J/gºC (specific heat capacity of copper)

\Delta T = 15^{\circ}C (change in temperature)

Substituting, we find:

Q=(25)(0.39)(15)=146 J

So, the closest answer is B) 150 J.

Learn more about specific heat capacity:

brainly.com/question/3032746

brainly.com/question/4759369

#LearnwithBrainly

3 0
3 years ago
Which factors allow for life on Earth​
Elan Coil [88]

Are there supposed to be multiple choices for this question?

6 0
3 years ago
Read 2 more answers
Identical balls are dropped from the same initial height and bounce back to half the initial height. In Case 1, the ball bounces
Kitty [74]

Answer:

<em>1. c. Same in both</em>

<em>2. a. Case 1</em>

<em></em>

Explanation:

1. The balls are identical in all sense, which means that if they are dropped from the same height, they should posses the same kinetic energy just before they collide with either the concrete floor or the stretchy rubber. Also, since they reach the same height when they bounced of the concrete floor or the piece of stretchy rubber, it means that they posses the same amount of kinetic energy at this point. Since their kinetic energy at these two points are the same, and they have the same masses, then this means that their momenta at these two instances will also be equal. Since all these is true, then the change in the momentum of the balls between the instance just before hitting the concrete floor or the stretchy rubber material and the instant the ball just leave the floor or the stretchy material is the same for both.

2. The ball that falls on the concrete will experience the greatest force, since the time of impact is small, when compared to the time spent by the other ball in contact with the stretchy rubber material; which will stretch, thereby extending the time spent in contact between them.

7 0
3 years ago
Choose the sequence of energy forms that best fits each item
castortr0y [4]

I hope its help for you

have a great day

3 0
2 years ago
An internet radio broadcast isA. not excludable and not rival in consumption.B. excludable and not rival in consumption.C. exclu
rodikova [14]

Answer:

A. not excludable and not rival in consumption.

Explanation:

8 0
2 years ago
Other questions:
  • A rigid, insulated tank that is initially evacuated is connected though a valve to a supply line that carries steam at 1 MPa and
    12·1 answer
  • Two rowers, who can row at the same speed in still water, head across a river. . . The first rower (Alice) heads straight across
    11·1 answer
  • Which of the following nuclei is most stable based on its binding energy?
    6·1 answer
  • A rocket is fired straight up. It contains two stages (Stage 1 and Stage 2) of solid rocket fuel that are designed to burn for 1
    15·1 answer
  • A 150-kg crate rests in the bed of a truck that slows from 50 km/h to a stop in 12 s. The coefficient of static friction between
    9·1 answer
  • A 40kg rock falls off a cliff that is 50 meters high. How fast is the speed of the rock when it hits the ground
    6·1 answer
  • Which graph shows the correct relationship between kinetic and speed
    8·2 answers
  • Consider these two characteristics.
    10·2 answers
  • What is the net force on a bathroom scale when a 150-pound person stands on it
    12·1 answer
  • Write a beta decay equation for the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!