c. Isoleucine has a carbon “branched” closer to the alpha carbon than does leucine.
The structure of leucine is CH3CH(<u>CH3</u>)CH2CH(NH2)COOH.
The structure of isoleucine is CH3CH2CH(<u>CH3</u>)CH(NH2)COOH.
In leucine, the CH3 group is <em>two carbons away</em> <em>from</em> the α carbon; in isoleucine, the CH3 group is on the carbon <em>next to</em> the α carbon.
Thus, <em>isoleucine</em> has the closer branched carbon.
“One is charged, the other is not” is i<em>ncorrect</em>. Both compounds are uncharged.
“One has more H-bond acceptors than the other” is <em>incorrect</em>. Each acid has two H-bond acceptors — the N in the amino and the O in the carbonyl group.
“They have different numbers of carbon atoms” is <em>incorrec</em>t. They each contain six carbon atoms.
Answer:
Neon (Ne) has the most stable outer electron configuration because the outer electron is completely filled and it has octet structure
Explanation:
The configuration of these elements is as follows;
Cl₁₇ = 2, 8,7 (the outer electron is 7)
Ca₂₀ = 2,8,8,2 (the outer electron is 2)
Ne₁₀ = 2,8 (the outer electron is 8)
Na₁₁ = 2,8,1 (the outer electron is 1)
Based on the outer electron value above, Neon (Ne) has the most stable outer electron configuration because the outer electron is completely filled and it has octet structure.
Q6. 3
Q7. 3
Q8. pH
Q18. 3
Q19. 3
Q20. 4
Hope this helped??
Answer:
B. Excited state
Explanation:
Energy levels higher than the ground state are called the excited states. This concept is based on the premise that electrons can move round the nucleus in certain permissibe orbits or energy levels.
The ground state is the lowest energy state available to the electron. This is usually the most stable state.
The excited state is any level higher than the ground state. An electron in an energy level has a definite amount of energy associated with it at that level.