Hey there!
I think it's true
Hope this helps!
Always remember, you are a Work Of Art!
- Nicole <3 :)
The acceleration : 0.25 m/s²
<h3>Further explanation</h3>
Given
mass = m = 24 kg
Force = F = 6 N
Required
The acceleration
Solution
Newtons' second law :
Newton's 2nd law explains that the acceleration produced by the resultant force on an object is proportional and in line with the resultant force and inversely proportional to the mass of the object
ΣF = m x a

Input the value :
6 N = 24 kg x a
a = 6 : 24
a = 0.25 m/s²
Answer:
see explanation
Explanation:
To determine limiting reactant divide mole quantities of reactants by the respective coefficient in the balanced equation. The smaller value is the limiting reactant.
P₄ + 5O₂ => 2P₂O₅
12/1 = 12 15/5 = 3
O₂ is the limiting reactant. P₄ will be in excess when rxn stops.
Molarity is defined as the number of moles of solute in 1 L of solution
the mass of Ca(NO₃)₂ present - 8.50 g
therefore number of moles of Ca(NO₃)₂ - 8.50 g / 164 g/mol = 0.0518 mol
the volume of solution prepared is 755 mL
therefore if there are 0.0518 mol in 755 mL
then in 1000 mL the number of moles - 0.0518 mol / 0.755 L
molarity is therefore - 0.0686 M
The concentration in mol/l of reactant after 1.5 s is calculated as follows
from first order integrated equation
In (A)t = - Kt + In (A)o where
At = final concentration =?
A)o =initial concentration =0.27 M
K = constant=0.75
T=temperature = 1.5 s
in( A)t = -0.75(1.5) + in(0.27)
In (A)t =-1.125 +-1.31 =-2.435
In(A)t =-2.435
In (A)t = e
find the e value
( A)t is therefore =0.0876 mol/l