Answer:
12.044 ×10²³ molecules of HCl
Explanation:
Given data:
Number of moles of MgO = 1 mol
Number of molecules of HCl react = ?
Solution:
Chemical equation:
MgO + 2HCl → MgCl₂ + H₂O
with 1 mole of MgO 2 moles of HCl are react.
Number of molecules of HCl react:
1 mole contain 6.022×10²³ molecules
2 mol × 6.022×10²³ molecules / 1 mol
12.044 ×10²³ molecules
Answer:
1.3 kg
Explanation:
Mass of ocean water = mass of NaCl × (mass of ocean water/mass NaCl).
The % NaCl tells us there are 3.5 g NaCl/100 g ocean water or 100 g ocean water/3.5 g NaCl.
Mass of ocean water = 46.8 × (100/3.5)
Mass of ocean water = 46.8 × 28.6
Mass of ocean water = 1300 g = 1.3 kg
<em>Note</em>: The answer can have only <em>two significant figures</em> because that is all you gave for the percentage of NaCl.
(a) In this section, give your answers to three decimal places.
(i)
Calculate the mass of carbon present in 0.352 g of CO
2
.
Use this value to calculate the amount, in moles, of carbon atoms present in 0.240 g
of
A
.
(ii)
Calculate the mass of hydrogen present in 0.144 g of H
2
O.
Use this value to calculate the amount, in moles, of hydrogen atoms present in 0.240 g
of
A
.
(iii)
Use your answers to calculate the mass of oxygen present in 0.240 g of
A
Use this value to calculate the amount, in moles, of oxygen atoms present in 0.240 g
of
A
(b)
Use your answers to
(a)
to calculate the empirical formula of
A
thank you
hope it helpsss
1.) Particle B has a greater kinetic energy because when a particle is at higher temperature it contains more energy.
2.) Diagram B best shows the overflow of heat between the particles. It does because of the enclosed space that it is in and how it will circulate in it.
3.) Heat is transferred between object A and B by having object B (warmer) make a reaction with object A (colder).
Answer is: ammonia has a higher boiling point because it has stronger intermolecular forces.
Intermolecular forces<span> are the forces between </span><span>molecules. The stronger are intermolecular forces, the higher is boiling point of compound, because more energy is needed to break interaction between molecules.
</span>There are several types of intermolecular forces: hydrogen bonding, i<span>on-induced dipole forces, ion-dipole forces andvan der Waals forces.</span>