Answer:
m = 105.37 kg
Explanation:
We are given;
Mass of man; m = 113 kg
Length of boat = 6.3m
Now, The position of the center of mass will not change during the motion of the man.
Thus,
X_g,i = X_g,f
So,
[113(6.3) + ma]/(113 + m) = [113(3.26) + m(a +3.26)]/(113 + m)
113 + m will cancel on both sides to give;
113(6.3) + ma = [113(3.26) + m(a +3.26)]
711.9 + ma = 368.38 + ma + 3.26m
ma will cancel out to give;
711.9 - 368.38 = 3.26m
343.52/3.26 = m
m = 105.37 kg
The wavelength decreases to roughly half.
(The frequency roughly doubles.)
Hi, thank you for posting your question here at Brainly.
This problem could be solved using this equation:
Diffraction limit = 1.22*wavelength/diameter
diameter = 0.8 cm = 0.008 m
wavelength = 500E-9 m
Diffraction limit = 1.22(500E-9)/0.008
Diffraction limit = 0.00007625
Answer:
Explanation:
The refractive index of a medium is given by the following formula:
where,
η = refractive index = 1.5
= angle of incidence = ?
= angle of refraction = 15°
Therefore,
Answer:
T = 3990 N
Explanation:
The free body diagram for the elevator consists of a tension force pointing up, and its weight pointing down. So the elevator's net force is:
F = T - 2940N
ad at the same time, using Newton's second law, we have that this net force should equal the elevator's mass (300 kg) times its acceleration (a):
T - 2940N = 300kg (3.5m/s^2)
then
T = 2940 N + 1050 N
T = 3990 N