Answer:
So visible wavelength which is possible here is
416 nm and 693.3 nm
Explanation:
As we know that for normal incidence of light the path difference of the reflected ray is given as

so here we can say that for maximum intensity condition we will have

so we have

now for visible wavelength we have
for N = 1




for N = 2



for N = 3



Answer:
<h3>The answer is 1600 kgm/s</h3>
Explanation:
The momentum of an object can be found by using the formula
<h3>momentum = mass × velocity</h3>
From the question
mass = 200 kg
velocity / speed = 8m/s
We have
momentum = 200 × 8
We have the final answer as
<h3>1600 kgm/s</h3>
Hope this helps you
Refer to the diagram shown below.
At A, the boy begins walking up the stairs.
At B, the boy is at the top of the slide. He has acquired PE (potential energy).
The value of the PE is
(50 kg)*(9.8 m/s²)*(11.5 m) = 5635 J
At C, the boy has KE (kinetic energy).
The value of the KE is
(1/2)*(50 kg)*(12 m/s)² = 3600 J
Energy is lost between B and C due to friction.
The lost energy is
5635 - 3600 = 2035 J
The distance traveled along the slide is 108 m.
If F = the average frictional force, then
(F N)*(108 m) = 2035 J
F = 18.84 N
Answers:
(a) The mechanical energy lost by sliding is 2035 J.
(b) The average frictional force is 18.84 N
A couple of things, if the shuttle burned all of it's fuel before entering Earth's atmosphere then that means that the shuttle was accelerating towards Earth until it ran out of fuel. At that point, there is little to no air resistance (friction) by the lack of an atmosphere so it keeps accelerating due to Earth's gravitational force. The closer the shuttle gets to Earth the stronger the gravitational pull the shuttle experiences. Note that, once the shuttle reaches Earth's atmosphere it will cause significant amount of friction and thus will cause the shuttle to slow down.
Answer:
Its 5 because of the equation
Explanation:
Thank You Merry christmas.