75 percent (calculated percentage %) of what number equals 27? Answer: 36.
Answer:
78.498N
Explanation:
The Net force provided by the spinnaker can be obtained from Newton's second law of motion as follows;

where m is the mass, v is the final velocity, u is the initial velocity and t is the time interval for which the force acted.
Given;
m =980lb
v = 12mi/h
u =8mi/hr
t = 10s.
It is important to convert all quantities to their SI units where necessary, so we do that as follows;
1lb = 0.45kg,
hence 980lb = 980 x 0.45kg = 441kg.
1mile = 1609.34m
1hour = 3600s,
therefore;


Substituting all values into equation (1), we obtain the following;

Answer:
the third law (for every action there is an equal and opposite reaction).
Explanation:
The skateboarder pushes backwards on the road (that is he applies a force on the road in a direction opposite the direction of intended motion). By Newton's third law, this action of the skateboarder causes an equal reaction of the road on the skateboarder in the opposite direction. Newton's third law states that action and reaction are equal but opposite in direction. So, the road in response to this backward force pushes the skateboarder in the forward direction causing the skateboarder and the skateboard to move in the forward direction.
Answer:
<h2>1) there is no work done on the system</h2><h2>2) A) Using a lever to lift 100 newtons up to 4 meters on to a shelf</h2><h2 /><h2>3) P = 140 W</h2><h2>4) D) In a closed system, a system that isolated from its surrounds, the total energy of the system is conserved</h2>
Explanation:
1) As we know that work done is the product of force and the displacement of the point of action where force is applied
So here we have

as there is no displacement in the direction where the force is applied
2)As we know that work is product of force and displacement
So we will have




So maximum work is done on
A) Using a lever to lift 100 newtons up to 4 meters on to a shelf
3)
As we know that power is rate of work done
so we have



4)
As per energy conservation we know that
D) In a closed system, a system that isolated from its surrounds, the total energy of the system is conserved