Answer:
Number of Wire Turns in the Coil.
Explanation:
The greater the number of turns of wire in the coil, the greater the inductance. Fewer turns of wire in the coil results in lesser inductance. More coils of wires indicate a greater amount of magnetic field force for a given amount of coil current.
Answer:
Unknown
Explanation:
By definition, we can't observe what's inside there, because no light – no information of any kind – can escape a black hole. But astrophysical theories suggest that, at the core of a black hole, all the black hole's mass is concentrated into a tiny point of infinite density. This point is known as a singularity.
Answer:
Explanation:
We shall apply conservation of momentum law in vector form to solve the problem .
Initial momentum = 0
momentum of 12 g piece
= .012 x 37 i since it moves along x axis .
= .444 i
momentum of 22 g
= .022 x 34 j
= .748 j
Let momentum of third piece = p
total momentum
= p + .444 i + .748 j
so
applying conservation law of momentum
p + .444 i + .748 j = 0
p = - .444 i - .748 j
magnitude of p
= √ ( .444² + .748² )
= .87 kg m /s
mass of third piece = 58 - ( 12 + 22 )
= 24 g = .024 kg
if v be its velocity
.024 v = .87
v = 36.25 m / s .
<span>If the swimmer is swimming perpendicular to the current, it will take her 66m / 0.42 m/s = 157.14 seconds to cross the river. At the same time, the current will be taking her downstream at a rate of 0.32 m/s. So, when she reaches the opposite bank, her total downstream distance traveled will have been 0.32*157.14 = 50.28 meters.</span>