Answer:
Lone pairs cause bond angles to deviate away from the ideal bond angles
Explanation:
Bonded electrons are stabilized and clustered between the bonding electrons meaning they are much closer together. Non-bonding electrons however are not being shared between any atoms which allows them to roam a little further spreading the charge density over a larger space and therefore interfering with what would be an expected bond angle
We have that F=ma from the 2nd Newton law where F is the force, m is the mass and a is the acceleration. Suppose we have that F' is the new force and m' is the new mass. Then, we have that a'=F'/m' still, by rearranging Newton's law. We are given that F'=2F and m'=m/2. Hence,

But now, we have from F=ma, that a=F/m and we are given that a=1m/s^2.
We can substitute thus, a'=4a=4*1m/s^2=4m/s^2.
Is the divine injunction found in Genesis 1:28, in which God, after having created the world and all in it, ascribes to humankind the tasks of filling, subduing, and ruling over the earth.
Central maximum = d* wavelength/ D
thus
12*10-^3 = 3.4*6.32*10-^7/D
D = 3.4*6.32*10-^7/12*10-^3
D = 1.79*10-^4 m
The wavelengths of the constituent travelling waves CANNOT be 400 cm.
The given parameters:
- <em>Length of the string, L = 100 cm</em>
<em />
The wavelengths of the constituent travelling waves is calculated as follows;

for first mode: n = 1

for second mode: n = 2

For the third mode: n = 3

For fourth mode: n = 4

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.
The complete question is below:
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:
A. 400 cm
B. 200 cm
C. 100 cm
D. 67 cm
E. 50 cm
Learn more about wavelengths of travelling waves here: brainly.com/question/19249186