Answer:

Explanation:
The maximum velocity of an object moving in a curve beyond which it will slide off the curve is given by the relationship in equation (1);

where
is the coefficient of friction between the object and the surface of the curve, g is acceleration due to gravity and r is the radius of the curve.
Given;
v = 0.8m/s
g = 
r = ?

In order to solve for
, we can simply make it the subject of formula from equation (1) as follows;

since we were not given the value of r, we can just substitute other known values, then solve and leave the answer in terms of r.
Therefore;


1 mile = 1.609 km
(135,000 km) x (1 mile / 1.609 km) = 83,885.1 miles
I believe that your answer is going to be C. The ability to do work
Answer:
x ’= 368.61 m, y ’= 258.11 m
Explanation:
To solve this problem we must find the projections of the point on the new vectors of the rotated system θ = 35º
x’= R cos 35
y’= R sin 35
The modulus vector can be found using the Pythagorean theorem
R² = x² + y²
R = 450 m
we calculate
x ’= 450 cos 35
x ’= 368.61 m
y ’= 450 sin 35
y ’= 258.11 m