Answer:
C.
Explanation:
We are given that
Initial concentration, ![[A]_o=4.3 M](https://tex.z-dn.net/?f=%5BA%5D_o%3D4.3%20M)
First half life,
minutes
Second half life,
minutes
We have to find K.
The given reaction is zero order reaction.
We know that for zero order reaction
![t_{\frac{1}{2}}=\frac{[A]_o}{2k}](https://tex.z-dn.net/?f=t_%7B%5Cfrac%7B1%7D%7B2%7D%7D%3D%5Cfrac%7B%5BA%5D_o%7D%7B2k%7D)
Using the formula



Hence, option C is correct.
Answer:
C₆H₁₂O₆ + 6O₂ —> 6CO₂ + 6H₂O
Explanation:
Glucose (C₆H₁₂O₆) react with oxygen (O₂) to produce carbon dioxide (CO₂) and water (H₂O).
The equation can be written as follow:
C₆H₁₂O₆ + O₂ —> CO₂ + H₂O
The above equation can be balance as illustrated below:
C₆H₁₂O₆ + O₂ —> CO₂ + H₂O
There are 6 atoms of C on the left side and 1 atom on the right side. It can be balance by putting 6 in front of CO₂ as shown below:
C₆H₁₂O₆ + O₂ —> 6CO₂ + H₂O
There are 12 atoms of H on the left side and 2 atoms on the right side. It can be balance by putting 6 in front of H₂O as shown below:
C₆H₁₂O₆ + O₂ —> 6CO₂ + 6H₂O
There are a total of 8 atoms of O on the left side and a total of 18 atoms on the right side. It can be balance by 6 in front of O₂ as shown below:
C₆H₁₂O₆ + 6O₂ —> 6CO₂ + 6H₂O
Now, the equation is balanced.
They are all things you can do to elements on the periodic table?
Answer:
B
Explanation:
As the distance between the planets and the sun increases, the period of revolution increases as well. The period of revolution is how long it takes for a planet to revolve around the sun. So, because the planets farther from the sun have a higher period of revolution in earth years, this also means they have longer actual years, which means the answer is B.