Answer:
The magnitude of the force on the wire is 2.68 N.
Explanation:
Given that,
Length of the wire, L = 5 m
Magnetic field, B = 0.37 T
Angle between wire and the magnetic field, 
Current in the wire, I = 2.9 A
We need to find the magnitude of the force on the wire. The magnetic force in the wire is given by :

So, the magnitude of the force on the wire is 2.68 N. Hence, this is the required solution.
The period of the wave is determined as 0.083 seconds.
<h3>What is period of a wave?</h3>
The period of a wave is the time taken by a particle of the medium to complete one vibration.
<h3>Period of the wave</h3>
The period of the wave is calculated as follows;
T = 1/f
where;
- T is the period of the wave
- f is frequency of the wave
T = 1/12
T = 0.083 seconds
Thus, the period of the wave is determined as 0.083 seconds.
Learn more about period of a wave here: brainly.com/question/18818486
#SPJ4
Retrograde. Planets seem to move forward and then backward sometimes. This is really because we pass them as we move in our orbit but astronomers wanted to try to describe the solar system with earth at the center so elaborate models were employed.
The farther away an object is from the Sun the slower it orbits around it. The closer an object is from the Sun the faster it orbits around it.