Answer:
0.833
Explanation:
Power = energy / time
Power = force × distance / time
Power = force × velocity
P = (850 kg) (9.8 m/s²) (1.00 m/s)
P = 8330 W
P = 8.33 kW
The efficiency of the motor is therefore:
e = 8.33 kW / 10.0 kW
e = 0.833
<h3><u>Answer;</u></h3>
= 20.436 seconds
<h3><u>Explanation;</u></h3>
Speed = Distance × time
Therefore;
Time = Distance/speed
Distance = 7.50 m, speed = 0.367 m/s
Time = 7.50/0.367
<u>= 20.436 seconds </u>
Answer:
The particle’s velocity is -16.9 m/s.
Explanation:
Given that,
Initial velocity of particle in negative x direction= 4.91 m/s
Time = 12.9 s
Final velocity of particle in positive x direction= 7.12 m/s
Before 12.4 sec,
Velocity of particle in negative x direction= 5.32 m/s
We need to calculate the acceleration
Using equation of motion


Where, v = final velocity
u = initial velocity
t = time
Put the value into the equation


We need to calculate the initial speed of the particle
Using equation of motion again


Put the value into the formula


Hence, The particle’s velocity is -16.9 m/s.
Answer:
The charges from the thunderstorm flow through the conductive metal
of which the vehicle is made and distribute themselves on the outside surface of the vehicle
Explanation:
It is actually safer to stay inside a car during a thunderstorm rather than standing outside the car. The reason is this, thunder passes electrical charges through a conductor. The body of the vehicle is made of a metal which is a good conductor of electricity. The charges will redistribute themselves on the body of the vehicle (a metallic conductor of electricity) hence the occupants of the car are relatively safe.
The reasons described above makes those inside the vehicle relatively safe compared to a person standing outside.