Concentration of the reactant,pressure,surface
area of the reactant and temperatur
<h3>
Answer:</h3>
3.5 Newton
<h3>
Explanation:</h3>
We are given;
Mass of the ball = 140 g
Acceleration = 25 m/s²
Required to find the force;
- According to Newton's second law of motion, the resultant force on a body in motion and the rate of change in linear momentum are directly proportional.
- That is;

- Thus; F = ma , where F is the resultant force, m is the mass and a is the acceleration.
To get the force we substitute the value of m and a in the formula;
Therefore;
F = 0.14 kg × 25 m/s²
= 3.5 N
Hence, the force needed to accelerate the ball is 3.5 N
I found this....
Supraglacial Moraine
A supraglacial moraine is material on the surface of a glacier. Lateral and medial moraines can be supraglacial moraines. Supraglacial moraines are made up of rocks and earth that have fallen on the glacier from the surrounding landscape. Dust and dirt left by wind and rain become part of supraglacial moraines. Sometimes the supraglacial moraine is so heavy, it blocks the view of the ice river underneath.
If a glacier melts, supraglacial moraine is evenly distributed across a valley.
Ground Moraine
Ground moraines often show up as rolling, strangely shaped land covered in grass or other vegetation. They don’t have the sharp ridges of other moraines. A ground moraine is made of sediment that slowly builds up directly underneath a glacier by tiny streams, or as the result of a glacier meeting hills and valleys in the natural landscape. When a glacier melts, the ground moraine underneath is exposed.
Ground moraines are the most common type of moraine and can be found on every continent.
Terminal Moraine
A terminal moraine is also sometimes called an end moraine. It forms at the very end of a glacier, telling scientists today important information about the glacier and how it moved. At a terminal moraine, all the debris that was scooped up and pushed to the front of the glacier is deposited as a large clump of rocks, soil, and sediment.
Scientists study terminal moraines to see where the glacier flowed and how quickly it moved. Different rocks and minerals are located in specific places in the glacier’s path. If a mineral that is unique to one part of a landscape is present in a terminal moraine, geologists know the glacier must have flowed through that area.
Carbohydrates are classified in three major categories depending upon the number of sub units joining to form them. These are,
Monosaccharides
Oligosaccharides
Polysachharides
The simplest single units are monosaccharides, if units are ranging between two and twenty they are called oligosaccharides and above twenty joining units they are called polysachharides.
Result:
<span>The proper name for a carbohydrate polymer with 2 subunits is called Oligosachharide in general and Disaccharide in specific.</span>