Answer:
The average magnetic flux through each turn of the inner solenoid is 
Explanation:
Given that,
Number of turns = 22 turns
Number of turns another coil = 330 turns
Length of solenoid = 21.0 cm
Diameter = 2.30 cm
Current in inner solenoid = 0.140 A
Rate = 1800 A/s
Suppose For this time, calculate the average magnetic flux through each turn of the inner solenoid
We need to calculate the magnetic flux
Using formula of magnetic flux


Put the value into the formula


Hence, The average magnetic flux through each turn of the inner solenoid is 
Answer:
Explanation:
Given:
Force, f = 5 N
Velocity, v = 5 m/s
Power, p = energy/time
Energy = mass × acceleration × distance
Poer, p = force × velocity
= 5 × 5
= 25 W.
Note 1 watt = 0.00134 horsepower
But 25 watt,
0.00134 hp/1 watt × 25 watt
= 0.0335 hp.
Answer:
40 N
Explanation:
We are given that
Speed of system is constant
Therefore, acceleration=a=0
Tension applied on block B=T=50 N
Friction force=f=10 N
We have to find the friction force acting on block A.
Let T' be the tension in string connecting block A and block B and friction force on block A be f'.
For Block B

Where
=Mass of block B
Substitute the values


For block A

Where
Mass of block A
Substitute the values


Hence, the friction force acting on block A=40 N
Answer: 5.5m/s
Explanation:
vf=vi+at
vf= 4.0m/s + (0.50m/s^2)(3.0s)
Hey there!
There's many ways to do it - like melting and evaporating.
For example, we'll use water. Plain old water in a water bottle. Right now, it's in its liquid state of matter, but say you put it in the freezer for an hour. That would change its state of matter to solid, since it would be solid ice. Now, if you were to put it out in the sun on a blazing hot day for a couple of hours, it would evaporate and become water vapor, a gas. Lastly, if you can cool that water vapor it becomes a liquid again.
Hope this helps!