Answer:
7.344 s
Explanation:
A = 0.15 x 0.3 m^2 = 0.045 m^2
N = 240
e = - 2.5 v
B1 = 0.1 T
B2 = 1.8 T
ΔB = B2 - B1 = 1.8 - 0.1 = 1.7 T
Δt = ?
e = - dФ/dt
e = - N x A x ΔB/Δt
- 2.5 = - 240 x 0.045 x 1.7 / Δt
2.5 = 18.36 / Δt
Δt = 7.344 s
Answer:
0-4 acceleration comes at 12 m/s where (B) stagnates at 12 m/s and remains for 4 seconds (C) is breaks being activated slowing the car to 6 m/s in 2 seconds and (D) over the course of 4 seconds brings the car to 10 m/s.
Explanation:
Answer:
v ≈ 7900 m/s
Explanation:
centripetal force will equal gravity force
mv²/R = mg
v²/R = g
v² = Rg
v = √(Rg)
v = √(6.4e6(9.8))
v = 7.91959...e+3
v ≈ 7900 m/s
of course, at those velocities and that deep into the atmosphere, the satellite would quickly burn up, slow down, and cause tremendous damage to buildings etc. with the sonic boom shock wave. It would also have to avoid a lot of mountains as 4000 m is not that high.
Answer:
the answer is
Explanation:For equilibrium
Weight = Tension
mg=T
∴T=4×3.1π=12.4πN (as can be inferred from the question)
Y=
△l/l
T/A
=
1000
0.031
/20
12.4π/π(
1000
2
)
2
=
4×0.031
12.4×20×1000×(1000)
2
=2×10
12
N/m
2
*FRICTIONAL FORCE* in the opposite direction of the way Bobby is pushing.
Friction is a force which varies but it is always opposing the direction of motion.
*APPLIED FORCE* is the force that Bobby is pushing with.
An applied force is literally the force that is applied to an object.
*WEIGHT FORCE* is also called the force of gravity. It is straight downward.
It is the weight of the object multiplied by the force of gravity. If the TV weighed 100kg, acceleration is always 9.81 m/s^2, so the weight force would be 981 N.
*NORMAL FORCE* is the force which is holding the TV above ground. The ground supplies a force upward against the TV.
Normal force is just the force that prevents the TV from falling through the ground. We don't normally realize it in our everyday life, but the floor must hold everything up because gravity is always "pushing" against it.