Answer:
Keq = 2k₃
Explanation:
We can solve this exercise using Newton's second one
F = m a
Where F is the eleatic force of the spring F = - k x
Since we have two springs, they are parallel or they are stretched the same distance by the object and the response force Fe is the same for the spring age due to having the same displacement
F + F = m a
k₃ x + k₃ x = m a
a = 2k₃ x / m
To find the effective force constant, suppose we change this spring to what creates the cuddly displacement
Keq = 2k₃
Answer:
true
Explanation:
if you apply force to the top of a square it will not move
I believe the answer is 3). The cell wall provides protection, it doesn’t control movements of materials in and out of the cell.
Biker two won the race by 1 second ( hope this is helpful ).
Answer:
6.88 m/s
Explanation:
The Conservation of Energy states that:
Initial Kinetic Energy + Initial Potential Energy = Final Kinetic Energy + Final Potential Energy
So we can write

We can cancel the common factor of
which leaves us with

Lets solve for 

Subtract
from both sides of the equation.

Multiply both sides of the equation by 2.

Simplify the left side.
Apply the distributive property.

Cancel the common factor of 2.

Take the square root of both sides of the equation to eliminate the exponent on the right side.

We are given
.
We can now solve for the final velocity.

Anything multiplied by 0 is 0.


