Answer:
pKa of the histidine = 9.67
Explanation:
The relation between standard Gibbs energy and equilibrium constant is shown below as:
R is Gas constant having value = 0.008314 kJ / K mol
Given temperature, T = 293 K
Given,
So, Applying in the equation as:-
Thus,
![\frac{[His]}{[His+]}=e^{\frac{15}{-0.008314\times 293}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BHis%5D%7D%7B%5BHis%2B%5D%7D%3De%5E%7B%5Cfrac%7B15%7D%7B-0.008314%5Ctimes%20293%7D)
![\frac{[His]}{[His+]}=0.00211](https://tex.z-dn.net/?f=%5Cfrac%7B%5BHis%5D%7D%7B%5BHis%2B%5D%7D%3D0.00211)
Also, considering:-
![pH=pKa+log\frac{[His]}{[His+]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5Cfrac%7B%5BHis%5D%7D%7B%5BHis%2B%5D%7D)
Given that:- pH = 7.0
So, 
<u>pKa of the histidine = 9.67</u>
1. 5 ethyl, 2 methyl octane
2. 1 ethyl, 2 methyl cyclopentane
3. 3,3,5,5- tetrafluoro heptane
4. 3,4-dimethyl hexene
5. 3,4-dimethyl cyclobutene
6. 3,5 diisopropyl cyclohexene
7. 3,3,4 trimethyl pentyne
8. 2,6 dibromo phenol
keep in mind that between 4-7, there could be #1 in front of the main name. for example with #4: 3,4-dimethyl-1- hexene. this honestly depends on the professor how he/she likes it. It is not necessary because if the number is not specified, it is assumed is #1
Answer:
Living organisms need water to survive. Many scientists even believe that if any extra-terrestrial exists, water must be present in their environments. All oxygen-dependent organisms need water to aid in the respiration process. Some organisms, such as fish, can only breathe in water. Other organisms require water to break down food molecules or generate energy during the respiration process. Water also helps many organisms regulate metabolism and dissolves compounds going into or out of the body.
Explanation: