<span>A complete path through which charge can flow is an "Electric Circuit"
Hope this helps!</span>
Answer:

Explanation:
To solve the problem, the concepts related to the magnetic field and the current produced in a lightning bolt are necessary.
The current is defined by the load due to time, that is to say

Where,


So the current can be expressed as:


Once the current is found it is now possible to find the magnetic field, as this is given by the equation,

Where,
Permeability Constant
I= Current
r= radius
Replacing the values we have


Answer:
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Explanation:
Hi there!
The equations of height and velocity of the ball are the following:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height at time t.
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).
v = velocity of the ball at time t.
Placing the origin at the throwing point, y0 = 0.
Let´s use the equation of velocity to obtain the time at which the velocity is 12.0 m/s / 2 = 6.00 m/s.
v = v0 + g · t
6.00 m/s = 12.0 m/s -9.81 m/s² · t
(6.00 - 12.0)m/s / -9.81 m/s² = t
t = 0.612 s
Now, let´s calculate the height of the baseball at that time:
y = y0 + v0 · t + 1/2 · g · t² (y0 = 0)
y = 12.0 m/s · 0.612 s - 1/2 · 9.81 m/s² · (0.612 s)²
y = 5.51 m
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Have a nice day!
The acceleration is 3 m/s per minute, or 0.05 m/s per second.
Answer:

Explanation:
We can solve this problem by using Newton's second law of motion, which states that the net force acting on an object is equal to the product between its mass and its acceleration:

where
F is the net force on the object
m is its mass
a is its acceleration
In this problem:
F = 40 N is the force on the object
m = 2 kg is its mass
Therefore, the acceleration of the object is
