1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimaraw [331]
3 years ago
12

An elements atomic number is 85 how many protons would an atom of this element have?

Physics
2 answers:
garik1379 [7]3 years ago
5 0

85 protons are in astatine have.

ArbitrLikvidat [17]3 years ago
3 0
The atomic number and number of protons is the same thing :)

So here, your atom would have 85 protons.
You might be interested in
The magnitude E of an electric field depends on the radial distance r according to E = A/r4, where A is a constant with unit vol
Lesechka [4]

Answer:

\Delta V = 0.053 A

Explanation:

Electric field in a given region is given by equation

E = \frac{A}{r^4}

as we know the relation between electric field and potential difference is given as

\Delta V = -\int E. dr

so here we have

\Delta V = - \int (\frac{A}{r^4}) .dr

\Delta V = \frac{A}{3r_1^3} - \frac{A}{3r_2^3}

here we know that

r_1 = 1.71 m  and r_2 = 2.89 m

so we will have

\Delta V = \frac{A}{3}(\frac{1}{1.71^3} - \frac{1}{2.89^3})

so we will have

\Delta V = 0.053 A

8 0
3 years ago
Explain how Pascal's principle can be used to design a fluid power system and describe how a fluid power system works.
zhenek [66]
Pascal's law of fluid transfer states that when there is an increase in fluid pressure, the rest of the extrinsic variables also increases. For example, in a flow of liquid in an orifice, there is a contraction of diameter in the orifice part. The fluid that will go in there increases in pressure and thereby an increase in velocity as well.
4 0
3 years ago
A string under a tension of 50.4 N is used to whirl a rock in a horizontal circle of radius 2.51 m at a speed of 21.1 m/s. The s
Leokris [45]

Answer:

619.8 N

Explanation:

The tension in the string provides the centripetal force that keeps the rock in circular motion, so we can write:

T=m\frac{v^2}{r}

where

T is the tension

m is the mass of the rock

v is the speed

r is the radius of the circular path

At the beginning,

T = 50.4 N

v = 21.1 m/s

r = 2.51 m

So we can use the equation to find the mass of the rock:

m=\frac{Tr}{v^2}=\frac{(50.4)(2.51)}{21.1^2}=0.284 kg

Later, the radius of the string is decreased to

r' = 1.22 m

While the speed is increased to

v' = 51.6 m/s

Substituting these new data into the equation, we find the tension at which the string breaks:

T'=m\frac{v'^2}{r'}=(0.284)\frac{(51.6)^2}{1.22}=619.8 N

5 0
3 years ago
The volume flow rate of the water supplied by a well is 2.0×10−4m3/s.The well is 40.0 m deep. (a) What is the power output of th
MaRussiya [10]

Answer:

a). P=78.4W

b). P=392kPa

c.) It must be at the bottom

Explanation:

Given:

Volume flow V_f=2.0x10^{-4}m^3/s

Well depp h=40.m

a.

The power output of the pum

W=F*d

F=m*g

m=p*V=1000kg/m^3*2.0x10^{-4}m^3}=0.2Kg

W=m*g*d=0.2kg*9.8m/s^2*40.0m=78.4kg*m^2/s^2

W=78.4J

P=\frac{W}{t}=\frac{78.4J}{1s}=78.4W

b.

The pressure of difference the pum

ΔP=p*g*y'

ΔP=1000kg/m^3*9.8m/s^2*40.0m=392x10^3Pa

P=392kPa

c.

It must be at the bottom since the pressure difference is greater than atmospheric pressure, so it wouldn't be able to lift the water all the way  

4 0
3 years ago
A circuit consists of a series combination of 6.50 −kΩ and 4.50 −kΩ resistors connected across a 50.0-V battery having negligibl
Vlada [557]

Answer:

Part A: 16.1 V

Part B: 20.5 V

Part C: 21.5%

Explanation:

The voltmeter is in parallel with the 4.5-kΩ resistor and the combination is in series with the 6.5-kΩ resistor. The equivalent resistance of the parallel combination is given as

\dfrac{1}{R_E}=\dfrac{1}{4.50}+\dfrac{1}{10.0}

R_E=\dfrac{4.50\times10.0}{4.50+10.0} = 3.10

Part A

The voltmeter reading is the potential difference across the parallel combination. This is found by using the voltage-divider rule.

V_1 = \dfrac{3.10}{3.10+6.50}\times50.0 = \dfrac{3.10}{9.60}\times50.0 = 16.1 \text{ V}

Part B

Without the voltmeter, the potential difference across the 4.5-kΩ resistor is found using the same rule as above:

V_2 = \dfrac{4.50}{4.50+6.50}\times50.0 = \dfrac{4.50}{11.0}\times50.0 = 20.5 \text{ V}

Part C

The error in % is given by

\dfrac{20.5-16.1}{20.5}\times100\% = \dfrac{4.4}{20.5}\times100\% = 21.5\%

4 0
3 years ago
Read 2 more answers
Other questions:
  • A snowball with a mass of 85 g hits the top hat of a 1.5 m tall snowman and sticks to it. the hat and the snowball, with a combi
    15·1 answer
  • An ideal parallel - plate capacitor consists of two parallel plates of area A separated by a distance d. This capacitor is conne
    15·1 answer
  • A ball on the end of a string is whirled around in a horizontal circle of radius 0.300 m. The plane of the circle is 1.00 m abov
    10·1 answer
  • If you increase the force on a box, it will have...
    10·1 answer
  • Larger size, longer life, and specialization are three advantages to<br> being a
    15·1 answer
  • An archer uses a bow to fire two similar arrows with the same string force. One
    7·1 answer
  • What is the velocity of a 1.3 kg puppy with a forward momentum of 6 kg m/s​
    12·1 answer
  • Describe what happens to the magnitude of the net electrostatic force on the electron as the electron
    7·1 answer
  • Will give brainliest.... Physics with work please
    13·1 answer
  • YALL HELP ME QUICK IN 10 MINS<br> WITH WORKING OUT
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!