Speed with which initially car is moving is 21 m/s
Reaction time = 0.50 s
distance traveled in the reaction time d = v t
d = 21 * 0.50 = 10.5 m
deceleration after this time = -10 m/s^2
now the distance traveled by the car after applying bakes



so total distance moved before it stop
d = 22.05 + 10.5 = 32.55 m
so the distance from deer is 35 - 32.55 = 2.45 m
now to find the maximum speed with we can move we will assume that we will just touch the deer when we stop
so our distance after brakes are applied is d = 35 - 10.5 = 24.5 m
again by kinematics



so maximum speed would be 22.1 m/s
Answer:
C. over land in polar regions.
Answer:
Yes is large enough
Explanation:
We need to apply the second Newton's Law to find the solution.
We know that,

And we know as well that

Replacing the aceleration value in the equation force we have,

Substituting our values we have,


The weight of the person is then,


<em>We can conclude that force on the ball is large to lift the ball</em>
They can change because the law of conservation of energy allows it to happen, for example when you are sitting, your body is at a potential energy state, meaning you are inert, you are not moving, but when you get up and suddenly start walking or running, that energy is converted to kinetic energy, meaning that you are moving and can be changed back into potential energy if all of a sudden you stop running or walking to rest or sit down. This is just an example of how energy can are transferred multiple ways
Data is inappropriate
here, we need gauge of the wire i.e., diameter of the wire, so that we calculate the resistance by using the formula
R = ρl/A
where R= resistance ; Ω
l = length of wire ; m
A = area of wire ; m²
ρ = resistivity ; Ω-m
But in general ohms law is
V = I R
R = V/I ;
but here we also calculate "R" from length of wire in which the current is flowing.
I hope it is helpful to you.