Answer:
0.1313 g.
Explanation:
- It is known that at STP, 1.0 mole of ideal gas occupies 22.4 L.
- Suppose that hydrogen behaves ideally and at STP conditions.
<u><em>Using cross multiplication:</em></u>
1.0 mol of hydrogen occupies → 22.4 L.
??? mol of hydrogen occupies → 1.47 L.
∴ The no. of moles of hydrogen that occupies 1.47 L = (1.0 mol)(1.47 L)/(22.4 L) = 6.563 x 10⁻² mol.
- Now, we can get the no. of grams of hydrogen in 6.563 x 10⁻² mol:
<em>The no. of grams of hydrogen = no. of hydrogen moles x molar mass of hydrogen</em> = (6.563 x 10⁻² mol)(2.0 g/mol) = <em>0.1313 g.</em>
Answer :
Explanation :
The aluminium and fluorine react to give ionic compound aluminium fluoride.
Aluminium has 1 valence electrons in their shell and fluorine has 7 valence electrons in their shell.
For the complete octet, both aluminium and fluorine exchange valence electrons to form an ionic compound.
The aluminium donates its three valence electrons to three fluorine atoms and they form one
and three
ions.
Electron transfer image is shown below.
I can =335ml
2cans=?
2cans×335ml÷1
= 670ml
Don't take my word for it but I think it is
1: proteins
2: energy from the sun, carbon dioxide, and water
3: this one is confusing me but I think it would be nutrients from food and oxygen
4: water
Again these are attempts I can't prove these
Bases- soap, baking soda
Acids- oranges,lemons
idk