Answer:
I think it's
there are the same number of molecules on each side of the equation, then a change of pressure makes no difference to the position of equilibrium
A reducing agent is one which is oxidised in the reaction itself. When you take into account the oxidation numbers you will see that the Cl- ions are oxidised from an oxidation number of -1 to 0 in Cl2. Therefore Cl- ions are the reducing agent.
Fe3N2, also known as Iron (II) nitride, is an ionic compound.
Ionic compounds are compounds that consists of metals and non-metals bonded with ionic bonds. The metal ion gives up electron(s) to the non-metals.
Since iron is a metal and nitrogen is an non-metal, the bond they would form would be an ionic bond. Iron gives up 2 electrons to form iron(II) ion, while nitrogen gains 3 electrons to form nitride ion. Since one iron cannot let a nitrogen gain 3 electrons, so in the compound, there would be 3 iron (ii) ions that has given up 6 electrons in total while 2 nitride ions have gained 6 electrons in total.
The balanced equation for the above reaction is as follows;
Mg + 2HCl ---> MgCl₂ + H₂
stoichiometry of HCl to MgCl₂ is 2:1
we have been told that Mg is in excess therefore HCl is the limiting reactant
number of HCl moles reacted - 0.100 mol/L x 0.0256 L = 0.00256 mol
according to molar ratio, number of MgCl₂ moles formed - 0.00256/2
Therefore number of MgCl₂ moles formed - 0.00128 mol
mass of MgCl formed - 0.00128 mol x 95.20 g/mol = 0.122 g
FeBr₃ ⇒ limiting reactant
mol NaBr = 1.428
<h3>Further explanation</h3>
Reaction
2FeBr₃ + 3Na₂S → Fe₂S₃ + 6NaBr
Limiting reactant⇒ smaller ratio (mol divide by coefficient reaction)
211 g of Iron (III) bromide(MW=295,56 g/mol), so mol FeBr₃ :

186 g of Sodium sulfide(MW=78,0452 g/mol), so mol Na₂S :

Coefficient ratio from the equation FeBr₃ : Na₂S = 2 : 3, so mol ratio :

So FeBr₃ as a limiting reactant(smaller ratio)
mol NaBr based on limiting reactant (FeBr₃) :
