The mass of this bag of cement in S.I. units (kg) is equal to 0.062 kilograms.
<u>Given the following data:</u>
- Mass of cement = 62 grams.
To calculate the mass of this bag of cement in S.I. units (kg):
<h3>How to convert to
S.I. units.</h3>
In Science, kilograms (kg) is the standard unit of measurement or S.I. units of the mass of a physical object. Thus, we would convert the value of the mass of this bag of cement in grams to kilograms (kg) as follows:
<u>Conversion:</u>
1000 grams = 1 kilograms.
62 grams = X kilograms.
Cross-multiplying, we have:
X = 
X = 0.062 kilograms.
Read more on mass here: brainly.com/question/13833323
<span>Maritime tropical air masses develop over warm waters present in the tropics and Gulf of Mexico, where heat and moisture are carried to to the overlying air from the water below.
</span><span>
</span><span> Tropical air masses having northward movement carry warm moist air into the United States, thus increasing the potential for condensation. Generally the southern states experience tropical air masses. But, in winter season, southerly winds ahead of migrating cyclones <span>sometimes transport tropical air mass towards north.
</span></span><span><span>
</span></span><span><span>The counterclockwise winds related to northern hemisphere mid latitude cyclones play an important role in the movement air masses, carrying warm moist air towards north ahead of a low while dragging colder and drier air towards south.</span></span>
Answer:
x = 0.6034 m
Explanation:
Given
L = 5 m
Wplank = 225 N
Wman = 522 N
d = 1.1 m
x = ?
We have to take sum of torques about the right support point. If the board is just about to tip, the normal force from the left support will be going to zero. So the only torques come from the weight of the plank and the weight of the man.
∑τ = 0 ⇒ τ₁ + τ₂ = 0
Torque come from the weight of the plank = τ₁
Torque come from the weight of the man = τ₂
⇒ τ₁ = + (5 - 1.1)*(225/5)*((5 - 1.1)/2) - (1.1)*(225/5)*((1.1)/2) = 315 N-m (counterclockwise)
⇒ τ₂ = Wman*x = 522 N*x (clockwise)
then
τ₁ + τ₂ = (315 N-m) + (- 522 N*x) = 0
⇒ x = 0.6034 m
Answer:
t = 13.7 s or t = 14 s with proper significant figures
Explanation:
The initial speed is 0 m/s since the car starts from rest, acceleration is 5.5 m/s2 and distance is 523 m.
Since we have initial speed, acceleration and distance we can use the following formula to find the time. We can now use algebra to work out our answer.
d = vt +
at²
523 = (0)t + (
)(5.5)t²
523 = 2.8t²
186.8 = t²
13.7 s = t
(t = 14 s with proper significant figures)