A. both permanent magnets and electromagnets.
Explanation:
A permanent magnet can affect and attract any other permanent magnet and even electromagnet.
They also affect any magnetic materials especially metals that can be magnetized.
In the vicinity of such substances, an attractive or repulsive force sets in and they both interact in the presence of the force field in place.
Permanent magnets cannot magnetize non-magnets.
An electromagnet is a magnet produced by the passage of electric current through a wire wound round a metallic core.
learn more:
Electromagnet brainly.com/question/2191993
#learnwithBrainly
Answer is: Keq expression for this system is Keq = <span>[O</span>₂<span> ]</span> · [H₂<span>]</span>² ÷ [H₂O<span>]</span>².<span>
Chemical reaction: 2H</span>₂O(g) ⇄ O₂(g) + 2H₂(g).
The equilibrium constant<span> (Keq) is a ratio of the concentration of the products (in this reaction oxygen and hydrogen) to the concentration of the reactants (in this reaction water).</span>
Electrolysis can be used to separate a substance into its original components/elements and it was through this process that a number of elements have been discovered and are still produced in today's industry.
Other natural material such as clay, wood, and stones can be changed into art.
Clay is pliable and is very easy to be molded into different shapes and sizes.
Wood can easily carved into different shapes, also different patterns can be easily etched on wood.
Stones of different variety and from different geological sources are painstakingly converted into statues or portraits of different life forms and scenery.
Answer: option (1) an electron.
Justification:
1) The plum pudding model of the atom conceived by the scientist J.J. Thompson, described the atom as a solid sphere positively charged with the electrons (particles negatively charged) embedded.
2) The next model of the atom, developed by the scientist Ernest Rutherford, depicted the atom a mostly empty space with a small dense positively charged nucleous and the electrons surrounding it.
3) Then, Niels Bhor came out with the model of electrons in fixed orbits around the nucleous, just like the planets orbit the Sun. So, the path followed by the electrons were orbits.
4) The quantum model of the atom did not place the electrons in fixed orbits around the nucleous but in regions around the nucleous. Those regions were named orbitals. And they are regions were it is most probable to find the electron, since it is not possible to tell the exact position of an electron.
As per this model, the electron has a wave function associated. The scientist Schrodinger developed the wave equation which predicts the location of the electron as a probability.
The orbitals are those regions were it is most likely to find the electron. Those regions are thought as clouds of electrons.