Answer:
See explaination
Explanation:
Please kindly check attachment for the step by step solution of the given problem
The option that is not an ASE certification is . A/C and Refrigerants handling certification (609).
<h3>What is ASE certification?</h3>
The term ASE is known to be a body that tends to promotes excellence in regards to vehicle repair, service as well as parts distribution.
Note that in the world today more than a quarter of million of people are known to possess ASE certifications.
Since ASE Certified professionals work in in all areas of the transportation industry. one can say that The option that is not an ASE certification is. A/C and Refrigerants handling certification (609).
Learn more about ASE certification from
brainly.com/question/5533417
#SPJ1
Answer:
5984.67N
Explanation:
A 14 inch diameter pipe is decreased in diameter by 2 inches through a contraction. The pressure entering the contraction is 28 psi and a pressure drop of 2 psi occurs through the contraction if the upstream velocity is 4.0 ft/sec. What is the magnitude of the resultant force (lbs) needed to hold the pipe in place?
from continuity equation
v1A1=v2A2
equation of continuity
v1=4ft /s=1.21m/s
d1=14 inch=.35m
d2=14-2=0.304m
A1=pi*d^2/4
0.096m^2
a2=0.0706m^2
from continuity once again
1.21*0.096=v2(0.07)
v2=1.65
force on the pipe
(p1A1- p2A2) + m(v2 – v1)
from bernoulli
p1 + ρv1^2/2 = p2 + ρv2^2/2
difference in pressure or pressure drop
p1-p2=2psi
13.789N/m^2=rho(1.65^2-1.21^2)/2
rho=21.91kg/m^3
since the pipe is cylindrical
pressure is egh
13.789=21.91*9.81*h
length of the pipe is
0.064m
AH=volume of the pipe(area *h)
the mass =rho*A*H
0.064*0.07*21.91
m=0.098kg
(193053*0.096- 179263.6* 0.07) + 0.098(1.65 – 1.21)
force =5984.67N
Answer:
± 0.003 ft
Explanation:
Since our distance is 10,000 ft and we need to use a full tape measure of 100 ft. We find that 10,000 = 100 × 100.
Let L' = our distance and L = our tape measure
So, L' = 100L
Now by error determination ΔL' = 100ΔL
Now ΔL' = ± 0.30 ft
ΔL = ΔL'/100
= ± 0.30 ft/100
= ± 0.003 ft
So, the maxim error per tape is ± 0.003 ft