2AgNO3 + Ni2+ = Ni(NO3)2 + 2Ag<span>+</span>
From the reaction,
it can be seen that AgNO3 and Ni2+ has following amount of substance
relationshep:
n(AgNO3):n(Ni)=2:1
From the relationshep we can determinate requred moles of Ni2+:
n(AgNO3)=m/M= 15.5/169.87=0.09 moles
So, n (Ni)=n(AgNO3)/2=0.045 moles
Finaly needed mass of Ni2+ is:
m(Ni2+)=nxM=0,045x58.7=2.64g
The answer is D. And if it is equally shared it is nonpolar covalent bond
The required formula of hydrate is MgSO₃.6H₂O.
<h3>How do we calculate the formula of hydrate?</h3>
The number of moles of water per mole of anhydrous solid (x) will be computed by dividing the number of moles of water by the number of moles of anhydrous solid (x) to find the hydrate's formula.
Moles will be calculated as:
n = W/M, where
- W = given mass
- M = molar mass
Moles of MgSO₃ = 0.737g / 104.3g/mol = 0.007mol
Moles of H₂O = 0.763g / 18g/mol = 0.04 mol
Number of H₂O molecule = 0.04/0.007 = 5.7 = 6
So formula of hydrate is MgSO₃.6H₂O.
Hence required formula of hydrate compound is MgSO₃.6H₂O.
To know more about hydrate compound, visit the below link:
brainly.com/question/22411417
#SPJ1
Answer:
a) After helping our partner, we should immediately report the incident to the lab manager or any person in charge of the emergencies occurring in the lab.
b) We should have a copy of the Material Safety Data Sheet to give to the responders. This is because the responder can identify what materials were being used by the person ans what other security measures need to be taken.