Answer :
The equilibrium concentration of CO is, 0.016 M
The equilibrium concentration of Cl₂ is, 0.034 M
The equilibrium concentration of COCl₂ is, 0.139 M
Explanation :
The given chemical reaction is:

Initial conc. 0.1550 0.173 0
At eqm. (0.1550-x) (0.173-x) x
As we are given:

The expression for equilibrium constant is:
![K_c=\frac{[COCl_2]}{[CO][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCOCl_2%5D%7D%7B%5BCO%5D%5BCl_2%5D%7D)
Now put all the given values in this expression, we get:

x = 0.139 and x = 0.193
We are neglecting value of x = 0.193 because equilibrium concentration can not be more than initial concentration.
Thus, we are taking value of x = 0.139
The equilibrium concentration of CO = (0.1550-x) = (0.1550-0.139) = 0.016 M
The equilibrium concentration of Cl₂ = (0.173-x) = (0.173-0.139) = 0.034 M
The equilibrium concentration of COCl₂ = x = 0.139 M
Never mind, I did the problem wrong, I deeply apologize.
Answer:
A. 20 grams of milk at 10°C
Explanation:
Since we refrigerate milk, it would be cooler than the room temperature, which standard norm is 25°C. So the milk has to be colder than the room temperature. Therefore, our answer is A.
Activity series of metals: K,Na,Mg,Al,Zn,Fe,Cu,Ag. Metals on the left are more reactive than metals on the right. For example Zn is more reactive than Fe and can displace him.
Reaction than can occur is: <span>CuSO4(aq) + Fe(s) → FeSO4(aq) + Cu(s).</span>