Density is defined as mass per unit volume. It has the SI unit kg m-3 or Kg/m-3 and is an absolute quantity. Specific gravity is the ratio of a material's density with that of water at 4 °C (where it is most dense and is taken to have the value 999.974 kg·m-3). It is therefore a relative quantity with no units.
Answer:
3.13cm/s²
Explanation:
Given
Initial velocity u = 3.5cm/s
Final velocity v = 8.2cm/s
Time t = 1.5secs
Required
Acceleration of the cart a
To get that, we will use the equation of motion
v = u+at
Substitute the given parameters
8.2 = 3.5+1.5a
1.5a = 8.2-3.5
1.5a = 4.7
a = 4.7/1.5
a = 3.13cm/s²
Hence the acceleration to the cart is 3.13cm/s²
Answer:
0.2 m/s
Explanation:
given,
mass of astronaut, M = 85 Kg
mass of hammer, m = 1 Kg
velocity of hammer , v =17 m/s
speed of astronaut, v' = ?
initial speed of the astronaut and the hammer be equal to zero = ?
Using conservation of momentum
(M + m) V = M v' + m v
(M + m) x 0 = 85 x v' + 1 x 17
85 v' = -17
v' = -0.2 m/s
negative sign represent the astronaut is moving in opposite direction of hammer.
Hence, the speed of the astronaut is equal to 0.2 m/s
Answer:
Option B
Explanation:
Looking at the 3 galvanometer readings given above, for galvanometer A, the reading is -2 mA.
For galvanometer B, the reading is 4 mA.
While for galvanometer C, the reading is -5 MA
Thus, option B is correct.
If the boat is floating, then it's just sitting there, and not accelerating
up or down. That means the vertical forces on it must be balanced.
So if its weight (acting downward) is 100 newtons, then the buoyant
force on it (acting upward) must also be 100 newtons.