Answer:
16.54 mL
Explanation:
From the question;
- Density of mercury of 13.6 g/mL
- Mass of the mercury metal is 225 g
We are needed to determine the volume of the mercury metal;
We need to know that;
- Density is given by dividing the mass of a substance by its volume.
That is;
Density = Mass ÷ Volume
Rearranging the formula;
Volume = Mass ÷ Density
Therefore;
Volume = 225 g ÷ 13.6 g/mL
= 16.54 mL
Thus, the volume of the mercury needed is 16.54 mL
Answer:
John Dalton
Explanation:
John Dalton developed the concept tittle: Dalton Law of Partial Pressure.
The formula is: Pt = Pa + Pb + Pc...... Pn
Answer:
CH₄(g) + 2O₂(g) ---> 1CO₂(g) + 2H₂O(g)
Explanation:
any combustion of a hydrocarbon equation is in form:
CₓHₐ(g) + BO₂(g) ---> YCO₂(g) + ZH₂O(g), where x,a,b,y,z are all whole number positive integers
there will be 1 CO₂ to 2 H₂O, since there is 1 C to 4 H in CH₄; it is not 1:4 since 2 H is needed in H₂O
CH₄(g) + _O₂(g) ---> 1CO₂ + 2H₂O
there is 4 total O on products side, which can make 2O₂
CH₄(g) + 2O₂(g) ---> 1CO₂(g) + 2H₂O(g)
Answer:Biodiversity is typically a measure of variation at the genetic, species, and ecosystem level. Terrestrial biodiversity is usually greater near the equator, which is the result of the warm climate and high primary productivity. Biodiversity is not distributed evenly on Earth, and is richest in the tropics.
Explanation:
Answer:
Potassium
General Formulas and Concepts:
<u>Chem</u>
- Reading a Periodic Table
- Periodic Trends
- Ionization Energy - energy required to remove an electron from a given element
- Coulomb's Law
- Shielding Effect
- Z-effective and Forces of Attraction
Explanation:
The Periodic Trend for 1st Ionization Energy is increasing up and to the right. That means He would have the highest I.E and therefore take the most amount of energy to remove an electron.
Potassium and Gallium are both in Period 4. Potassium is element 19 and Gallium is element 31.
Potassium's electron configuration is [Ne] 4s¹ and Gallium's electron configurations is [Ne] 4s²3d¹⁰4p¹. Since both are in Period 4, they have the same number of core e⁻. Therefore, the shielding effect is the same.
However, since Gallium is element 31, it has 31 protons compared to Potassium, which is element 19 and has 19 protons. Gallium would have a greater Zeff than Potassium as it has more protons. Therefore, the FOA between the electrons and nucleus of Ga is much stronger than that of K. Thus, Ga requires <em>more</em> energy to overcome those FOA to remove the 4p¹ e⁻. Since K has less protons, it will have a smaller Zeff and thus less FOA between the e⁻ and nucleus, requiring <em>less</em> energy to remove the 4s¹ e⁻.