Answer:
-1,103.39KJ/mol
Explanation:
We use the subtract the standard enthalphies of formation of the reactants from that of the products. It must be taken into consideration that the enthalpy of formation of elements and their molecules alone are not taken into consideration. Hence, what we would be considering are the standard enthalpies of formation of H2S, H2O and SO2.
In places where we have more than one mole, we multiply by the number of moles as seen in the balanced chemical equations.
The standard enthalpies of the molecules above are as follows:
H2S = -20.63KJ/mol
H2O = -285.8KJ/mol
SO2 = -296.84KJ/mol
O2 = 0KJ/mol
ΔrH⦵ = [2ΔfH⦵(H2O) + 2 ΔfH⦵(SO2)] − [ΔfH⦵(H2S) + 3
ΔfH⦵(O2)]
ΔrH⦵ =[(2 × -285.8) + (2 × -296.84)]
-[ 3 × -20.63)]
= (-571.6 - 593.68 + 61.89) = -1,103.39KJ/mol
Answer:
27 min
Explanation:
The kinetics of an enzyme-catalyzed reaction can be determined by the equation of Michaelis-Menten:
![v = \frac{vmax[S]}{Km + [S]}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bvmax%5BS%5D%7D%7BKm%20%2B%20%5BS%5D%7D)
Where v is the velocity in the equilibrium, vmax is the maximum velocity of the reaction (which is directed proportionally of the amount of the enzyme), Km is the equilibrium constant and [S] is the concentration of the substrate.
So, initially, the velocity of the formation of the substrate is 12μmol/9min = 1.33 μmol/min
If Km is a thousand times smaller then [S], then
v = vmax[S]/[S]
v = vmax
vmax = 1.33 μmol/min
For the new experiment, with one-third of the enzyme, the maximum velocity must be one third too, so:
vmax = 1.33/3 = 0.443 μmol/min
Km will still be much smaller then [S], so
v = vmax
v = 0.443 μmol/min
For 12 μmol formed:
0.443 = 12/t
t = 12/0.443
t = 27 min
Answer:
I think the right answer is c/ number of atomic orbitals
Answer:
Number of neutrons is equal to 148.
Answer : The correct option is, (2) Cr (Chromium)
Explanation :
The reactivity series of metal are arranged of the reactivity from the highest to the lowest. Reactivity series is used to determine the products of the single displacement reactions. In the single displacement reaction, the most reactive metal displaces the least reactive metal.
From the given reactivity series we conclude that there are two metal (Mg and Cr) are more reactive metal than the Ni and there are two metal (Pb and Cr) are less reactive metal than the Zn. So, the Cr (Chromium) is the metal which is more active than Ni and less active than Zn.
Hence, the correct option is, (2) Cr