Answer:
A machine have 75% efficiency means 25% of efficiency has been lost due to friction and a machine can work 75% only.
Answer:
C.) 2
Explanation:
The pH equation is:
pH = -log[H⁺]
In this equation, [H⁺] is the molarity of the acid. In this case, the acid is HCl. Molarity can be found using the equation:
Molarity (M) = moles / volume (L)
Since you were given moles and volume, you can find the molarity of HCl.
Molarity = moles / volume
Molarity = 0.01 moles / 1.00 L
Molarity = 0.01 M
Now, you can plug the molarity of the acid into the pH equation.
pH = -log[H⁺]
pH = -log[0.01]
pH = 2
Answer:
a. Gly-Lys + Leu-Ala-Cys-Arg + Ala-Phe
b. Glu-Ala-Phe + Gly-Ala-Tyr
Explanation:
In this case, we have to remember which peptidic bonds can break each protease:
-) <u>Trypsin</u>
It breaks selectively the peptidic bond in the carbonyl group of lysine or arginine.
-) <u>Chymotrypsin</u>
It breaks selectively the peptidic bond in the carbonyl group of phenylalanine, tryptophan, or tyrosine.
With this in mind in "peptide a", the peptidic bonds that would be broken are the ones in the <u>"Lis"</u> and <u>"Arg"</u> (See figure 1).
In "peptide b", the peptidic bond that would be broken is the one in the <u>"Phe"</u> (See figure 2). The second amino acid that can be broken is <u>tyrosine</u>, but this amino acid is placed in the <u>C terminal spot</u>, therefore will not be involved in the <u>hydrolysis</u>.
Carbonyl Compounds containing
alpha proton readily donates alpha acidic proton when treated with
strong Base. In given statement <span>
2-phenylacetaldehyde is converted into Enolate and Enolates acts as a nucleophile and attacks carbonyl group of
Benzaldehyde. The mechanism of given reaction is as follow, the movement of electrons is shown by
RED arrows,</span>
<span>2H2 + O2 mc015-1.jpg 2H2O
</span><span>26.70 moles</span>