Answer: Tides are periodic rises and falls of large bodies of water. Tides are caused by gravitational interaction between the earth and the moon. The gravitational attraction of the moon causes the oceans to bulge out in the direction of the moon.
Answer:
You need to use the equations of motion which I wrote down in the image. Since the runner starts from rest, the initial velocity(v0) is 0 and initial position(x0) is also 0. The solution is in the image attached below.
Answer:
The force required to maintain an object at a constant velocity in free space is equal to Zero.
Freezing (liquid to solid)
Deposition (gas to solid)
Condensation (gas to liquid)
All three of these state changes are a result of a energy loss. When considering energy loss it is best to think of situations where temperature has dropped. Less energy in the system results in less energy the substance is exposed to or has available.
Answer:
a) # buses = 7
Explanation:
For this exercise we use the kinematic equations, let's find the time it takes to reach the same height
y =
t - ½ g t²
Let's decompose the speed, with trigonometry
v₀ₓ = v₀ cos θ
= v₀ sin θ
v₀ₓ = 40 cos 32
v₀ₓ = 33.9 m / s
= 40 sin32
= 21.2 m / s
When it arrives it is at the same initial height y = 0
0 = (
- ½ gt) t
That has two solutions
t = 0 when it comes out
t = 2
/ g when it arrives
t = 2 21.2 /9.8
t = 4,326 s
We use the horizontal displacement equation
x = vox t
x = 33.9 4.326
x = 146.7 m
To find the number of buses we can use a direct proportions rule
# buses = 146.7 / 20
# buses = 7.3
# buses = 7
The distance of the seven buses is
L = 20 * 7 = 140 m
b) let's look for the scope for this jump
R = vo2 sin2T / g
R = 40 2 without 2 32 /9.8
R = 146.7 m
As we can see the range and distance needed to pass the seven (7) buses is different there is a margin of error of 6.7 m in favor of the jumper (security)