<span>Now consider a low pressure area on a disk as shown below.A parcel of air at point A would move toward the center of the low pressure area. That movement would take it farther away from the center of the disk and therefore it would move to the west. A parcel of air at B would move toward the center of the low pressure area which would also take it closer to the center of the spinning disk where its speed is greater than the surrounding points. It would appear to move to the east. With A moving to the west and B moving to the east the line from A to B is rotating counterclockwise.</span>
Answer:
ΔG°rxn = -69.0 kJ
Explanation:
Let's consider the following thermochemical equation.
N₂O(g) + NO₂(g) → 3 NO(g) ΔG°rxn = -23.0 kJ
Since ΔG°rxn < 0, this reaction is exergonic, that is, 23.0 kJ of energy are released. The Gibbs free energy is an extensive property, meaning that it depends on the amount of matter. Then, if we multiply the amount of matter by 3 (by multiplying the stoichiometric coefficients by 3), the ΔG°rxn will also be tripled.
3 N₂O(g) + 3 NO₂(g) → 9 NO(g) ΔG°rxn = -69.0 kJ
Waves interact with matter in several ways. The interactions occur when waves pass from one medium to another. Besides bouncing back like an echo, waves may bend or spread out when they strike a new medium. These three ways that waves may interact with matter are called reflection, refraction, and diffraction.
a. 30 moles of H₂O
b. 2.33 moles of N₂
<h3>Further explanation</h3>
Given
a. 20 moles of NH₃
b. 3.5 moles of O₂
Required
a. moles of H₂O
b. moles of N₂
Solution
Reaction
4NH₃+3O₂⇒2N₂+6H₂O
a. From the equation, mol ratio NH₃ : H₂O = 4 : 6, so mol H₂O :
=6/4 x mol NH₃
= 6/4 x 20 moles
= 30 moles
b. From the equation, mol ratio N₂ : O₂ = 2 : 3, so mol N₂ :
=2/3 x mol O₂
= 2/3 x 3.5 moles
= 2.33 moles
Answer:
5.450 mol Si₃N₄
Explanation:
Step 1: Write the balanced equation
3 Si + 2 N₂ ⇒ Si₃N₄
Step 2: Establish the theoretical molar ratio between the reactants
The theoretical molar ratio of Si to N₂ is 3:2 = 1.5:1.
Step 3: Establish the experimental molar ratio between the reactants
The experimental molar ratio of Si to N₂ is 16.35:11.26 = 1.45:1. Comparing both molar ratios, we can see that Si is the limiting reactant.
Step 4: Calculate the moles of Si₃N₄ produced from 16.35 moles of Si
The molar ratio of Si to Si₃N₄ is 3:1.
16.35 mol Si × 1 mol Si₃N₄/3 mol Si = 5.450 mol Si₃N₄