Answer:
11.8 m/s
Explanation:
At the top of the hill, there are two forces on the car: weight force pulling down (towards the center of the circle), and normal force pushing up (away from the center of the circle).
Sum of forces in the centripetal direction:
∑F = ma
mg − N = m v²/r
At the maximum speed, the normal force is 0.
mg = m v²/r
g = v²/r
v = √(gr)
v = √(9.8 m/s² × 14.2 m)
v = 11.8 m/s
Because upward buoyant force is slightly higher than gravitation force for this particular object
Work is force times distance. If there's no distance, there's no work being done.
R = 18 ohms
Explanation:
Given:
V = 36 volts
I = 2.0 A
R = ?
Use Ohm's law to solve for the resistance:
V = IR
or
R = V/I
= (36 volts)/(2.0 A)
= 18 ohms