Answer:
Rate constant of the reaction is
.
Explanation:
A + B + C → D + E
Let the balanced reaction be ;
aA + bB + cC → dD + eE
Expression of rate law of the reaction will be written as:
![R=k[A]^a[B]^b[C]^c](https://tex.z-dn.net/?f=R%3Dk%5BA%5D%5Ea%5BB%5D%5Eb%5BC%5D%5Ec)
Rate(R) of the reaction in trail 1 ,when :
![[A]=0.30 M,[B]=0.30 M,[C]=0.30 M](https://tex.z-dn.net/?f=%5BA%5D%3D0.30%20M%2C%5BB%5D%3D0.30%20M%2C%5BC%5D%3D0.30%20M)

...[1]
Rate(R) of the reaction in trail 2 ,when :
![[A]=0.30 M,[B]=0.30 M,[C]=0.90 M](https://tex.z-dn.net/?f=%5BA%5D%3D0.30%20M%2C%5BB%5D%3D0.30%20M%2C%5BC%5D%3D0.90%20M)

...[2]
Rate(R) of the reaction in trail 3 ,when :
![[A]=0.60 M,[B]=0.30 M,[C]=0.30 M](https://tex.z-dn.net/?f=%5BA%5D%3D0.60%20M%2C%5BB%5D%3D0.30%20M%2C%5BC%5D%3D0.30%20M)

...[3]
Rate(R) of the reaction in trail 4 ,when :
![[A]=0.60 M,[B]=0.60 M,[C]=0.30 M](https://tex.z-dn.net/?f=%5BA%5D%3D0.60%20M%2C%5BB%5D%3D0.60%20M%2C%5BC%5D%3D0.30%20M)

...[4]
By [1] ÷ [2], we get value of c ;
c = 1
By [3] ÷ [4], we get value of b ;
b = 0
By [2] ÷ [3], we get value of a ;
a = 2
Rate law of reaction is :
![R=k[A]^2[B]^0[C]^1](https://tex.z-dn.net/?f=R%3Dk%5BA%5D%5E2%5BB%5D%5E0%5BC%5D%5E1)
Rate constant of the reaction = k
![9.0\times 10^{-5} M/s=k[0.30 M]^2[0.30 M]^0[0.30 M]^1](https://tex.z-dn.net/?f=9.0%5Ctimes%2010%5E%7B-5%7D%20M%2Fs%3Dk%5B0.30%20M%5D%5E2%5B0.30%20M%5D%5E0%5B0.30%20M%5D%5E1)
![k=\frac{9.0\times 10^{-5} M/s}{[0.30 M]^2[0.30 M]^0[0.30 M]^1}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B9.0%5Ctimes%2010%5E%7B-5%7D%20M%2Fs%7D%7B%5B0.30%20M%5D%5E2%5B0.30%20M%5D%5E0%5B0.30%20M%5D%5E1%7D)

If your in a city, go inside a building immediately. most buildings have lightening rod, so the lightening voltage won't hit on you.
if you're in an open area, don't go under a tree, or it'll hit you and the tree, even if it doesn't hit you, you still cannot take the impact by the exploding tree. leave the water or metal bicycle or stuff that conducts electricity.
If it is located at the second to last row of the periodic table (the halogen family), has seven electrons on it's outer shell, and has an oxidation number of -1, it is a halogen.
Hope this helps : D
Answer:
A
Explanation:
this should be obvious if you read it haha
Answer:
A. for K>>1 you can say that the reaction is nearly irreversible so the forward direction is favored. (Products formation)
B. When the temperature rises the equilibrium is going to change but to know how is going to change you have to take into account the kind of reaction. For endothermic reactions (the reverse reaction is favored) and for exothermic reactions (the forward reaction is favored)
Explanation:
A. The equilibrium constant K is defined as

In any case
aA +Bb equilibrium Cd +dD
where K is:
![K= \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}](https://tex.z-dn.net/?f=K%3D%20%5Cfrac%7B%5BC%5D%5E%7Bc%7D%5BD%5D%5E%7Bd%7D%7D%7B%5BA%5D%5E%7Ba%7D%5BB%5D%5E%7Bb%7D%7D)
[] is molar concentration.
If K>>> 1 it means that the molar concentration of products is a lot bigger that the molar concentration of reagents, so the forward reaction is favored.
B. The relation between K and temperature is given by the Van't Hoff equation

Where: H is reaction enthalpy, R is the gas constant and T temperature.
Clearing the equation for
we get:

Here we can study two cases: when delta
is positive (exothermic reactions) and when is negative (endothermic reactions)
For exothermic reactions when we increase the temperature the denominator in the equation would have a negative exponent so
is greater that
and the forward reaction is favored.
When we have an endothermic reaction we will have a positive exponent so
will be less than
the forward reactions is not favored.
