Guessing you want the average speed. We can multiple each speed by the time we spent going that speed, and them all together and then divide by the total time we spent in traffic to get the average speed. We spent a total of 7.5 minutes in traffic, so average speed = (12*1.5+0*3.5+15*2.5)/7.5 = 7.4 m/s
CO2 and N2O keep the energy that gets to Earth from the sun inside the atmosphere. Without greenhouse gases, our planet would be too cold. But due to the recent increase in greenhouse gases, more energy released from the sun is contained in the Earth, heating it up.
The value of parameter C for the function in the figure is 2.
<h3>What is amplitude of a wave?</h3>
The amplitude of a wave is the maximum displacement of the wave. It can also be described at the maximum upward displacement of a wave curve.
f(x) = Acos(x - C)
where;
- A is amplitude of the wave
- C is phase difference of the wave
<h3>What is angular frequency of a wave?</h3>
Angular frequency is the angular displacement of any element of the wave per unit time.
From the blue colored graph; at y = 1, x = -2 cm
1 = cos(2 - C)
(2 - C) = cos^(1)
(2 - C) = 0
C = 2
Thus, the value of parameter C for the function in the figure is 2.
Learn more about phase angle here: brainly.com/question/16222725
#SPJ1
Responda:
1) E = 6 × 10 ^ 6NC ^ -1 2) Q = 6 × 10 ^ -5
Explicação:
Dado o seguinte:
Carga (q) = 3uC = 3 × 10 ^ -6C
Força elétrica (Fe) = 18N
Intensidade do campo elétrico (E) =?
1)
Lembre-se:
Força elétrica (Fe) = carga (q) * Intensidade do campo elétrico (E)
Fe = qE; E = Fe / q
E = 18N / (3 × 10 ^ -6C)
E = 6N / 10 ^ -6C
E = 6 × 10 ^ 6NC ^ -1
2)
Lembre-se:
E = kQ / r ^ 2
E = intensidade do campo elétrico
Q = carga de origem
r = distância de espera = 30cm = 30/100 = 0,3m
K = 9,0 × 10 ^ 9
6 × 10 ^ 6 = (9,0 × 10 ^ 9 * Q) / 0,3 ^ 2
9,0 × 10 ^ 9 * Q = 6 × 10 ^ 6 * 0,09
Q = 0,54 × 10 ^ 6 / 9,0 × 10 ^ 9
Q = 0,06 × 10 ^ (6-9)
Q = 0,06 × 10 ^ -3
Q = 6 × 10 ^ -5 = 60 × 10 ^ -6 = 60μC
I belive what your looking for is oxygen