Answer:
1) Current decreases; 2) Inverse proportionally; 3) 1[A]
Explanation:
1)
As we can see as the resistance increases the current decreases, if we take two points as an example, when the resistance is equal to 50 [ohms] the current is equal to 1[amp] and when the resistance is equal to 200 [ohms] the current tends to have a value below 0.5 [amp]. Thus demonstrating the decrease in current.
2)
Inverse proportionally, by definition we know that the law of ohm determines the voltage according to resistance and amperage. This is the voltage will be equal to the product of the voltage by the resistance.
![V=I*R\\V = voltage [volts]\\I = current[amp]\\R = resistance [ohms]](https://tex.z-dn.net/?f=V%3DI%2AR%5C%5CV%20%3D%20voltage%20%5Bvolts%5D%5C%5CI%20%3D%20current%5Bamp%5D%5C%5CR%20%3D%20resistance%20%5Bohms%5D)
where:

And whenever we have in a fractional number the denominator the variable we are interested in, we can say that this is inversely proportional to the value we are interested in determining. In this case, we can see from the two previous expressions that both the current and the resistance appear in the denominator, therefore they are inversely proportional to each other.
3)
If we place ourselves on the graph on the resistance axis, we see that at 50 [ohm] will correspond a current value equal to 1 [A].
Well potential energy is energy possessed by an object of by the position it's in. For example when you hold back a bow and arrow, but before you shoot it you are containing energy by holding the arrow back. So when you start the magnetic generator (pull or turn to start it) before using it for its purpose that is potential energy. I hope this helps.
Answer:
a) d₁ = 247.8 μm
d₂ = 205.3 μm
b) d₂ = 20.53 x 10⁻⁵ m = 205.3 μm
Explanation:
a)
The formula for Michelson Interferometer is derived to be:
d = mλ/2
where,
d = distance moved
m = no. of fringes
λ = wavelength of light
For JAN, we have following data
d = d₁
m = 818
λ = 606 nm = 606 x 10⁻⁹ m
Therefore,
d₁ = (818)(606 x 10⁻⁹ m)/2
<u>d₁ = 24.78 x 10⁻⁵ m = 247.8 μm</u>
For LINDA, we have following data
d = d₂
m = 818
λ = 502 nm = 502 x 10⁻⁹ m
Therefore,
d₂ = (818)(502 x 10⁻⁹ m)/2
<u>d₂ = 20.53 x 10⁻⁵ m = 205.3 μm</u>
b)
The resultant displacement can be found out from the difference between both displacement. And the direction of resultant displacement will be the same as the direction of greater displacement. Therefore,
Resultant Displacement = Δd = d₁ - d₂
Δd = 247.8 μm - 205.3 μm
<u>Δd = 42.5 μm (in the direction of JAN)</u>
<span> 146 kg is the answer to your question hope this helps bro
</span>
Answer:
I'm corona positive and isolated feeling depressed just logged in to talk someone but people ignoring me thanks for this behaviour got disappointed bye everyone logging out had a great time