Answer:
it means that velocity of a body rises by 9.8m/s each second if the air resistance is nrelated
mark me
Your question kind of petered out there towards the end and you didn't specify
the terms, so I'll pick my own.
The "Hubble Constant" hasn't yet been pinned down precisely, so let's pick a
round number that's in the neighborhood of the last 20 years of measurements:
<em>70 km per second per megaparsec</em>.
We'll also need to know that 1 parsec = about 3.262 light years.
So the speed of your receding galaxy is
(Distance in LY) x (1 megaparsec / 3,262,000 LY) x (70 km/sec-mpsc) =
(150 million) x (1 / 3,262,000) x (70 km/sec) =
<em>3,219 km/sec </em>in the direction away from us (rounded)
The answer would be a reflection. This is because, t<span>he color of an object is actually the wavelengths of the light reflected while all other wavelengths are absorbed. Color, in this case, refers to the different wavelengths of light in the </span>visible light spectrum<span>perceived by our eyes. The physical and chemical composition of matter determines which wavelength (or color) is reflected.</span>
The minimum initial speed of the dart so that the combination makes a complete circular loop after the collision is 58.5 m/s.
<h3>Minimum speed for the object not fall out of the circle</h3>
The minimum speed if given by tension in the wire;
T + mg = ma
T + mg = m(v²)/R
tension must be zero for the object not fall
0 + mg = mv²/R
v = √(Rg)
<h3>Final speed of the two mass after collision</h3>
Use the principle of conservation of energy
K.Ef = K.Ei + P.E
¹/₂mvf² = ¹/₂mv² + mg(2R)
¹/₂vf² = ¹/₂v² + g(2R)
¹/₂vf² = ¹/₂(Rg) + g(2R)
vf² = Rg + 4Rg
vf² = 5Rg
vf = √(5Rg)
vf = √(5 x 2.8 x 9.8)
vf = 11.7 m/s
<h3>Initial speed of the dart</h3>
Apply principle of conservation of linear momentum for inelastic collision;
5v = vf(20 + 5)
5v = 11.7(25)
5v = 292.5
v = 58.5 m/s
Learn more about linear momentum here: brainly.com/question/7538238
#SPJ1
The maximum height reached by the ball is 0.46m.
To find the answer, we have to know about the potential energy of a spring mass system.
<h3>How to find the maximum height reached by the ball?</h3>

- We have to find the maximum height reached by the ball.
- Thus, we have the expression for potential energy of a spring mass system and that of gravitational field as,


Thus, we can conclude that, the maximum height reached by the ball is 0.46m.
Learn more about the potential energy here:
brainly.com/question/26962934
#SPJ4