The value of relative humidity becomes 100% leading to condensation of water vapor in the air into water droplets or water (dew)
Answer:
Magnetic force, 
Explanation:
Given that,
A beryllium-9 ion has a positive charge that is double the charge of a proton, 
Speed of the ion in the magnetic field, 
Its velocity makes an angle of 61° with the direction of the magnetic field at the ion's location.
The magnitude of the field is 0.220 T.
We need to find the magnitude of the magnetic force on the ion. It is given by :

So, the magnitude of magnetic force on the ion is
.
Answer:
6.32m/s
Explanation:
note:Now these calculations are based in the fact that acc. due to gravity is 10m/s²
okay so I'm thinking you think the speed of a body depends on the mass of the body also,umh... well it doesn't at all!
when two bodies of different masses fall from the same height,they fall at the same time( this is just to say)
now enough of the talking let solve....
so the ball was dropped .ie from rest to the ground through a distance of 2m,
the formula for calculating the distance if a body moving in a straight line is given by:
S=ut + ½at² where u is initial velocity, a is acceleration ( of the body or due to gravity, but since its falling freely under the influence of gravity its " we use the acceleration due to gravity ,which is 10m/s²) and t is the time taken to cover the distance.
from our question the ball was dropped from rest thus its u is 0 therefore we use this equation to find the time it took to touch ground (S=½at²)
solving ....
we get t to be 0.632s
to find the speed we substitute t in the equation below:
V=u+at ,but since u=0
V=at =10•0.632=6.32m/s
therefore the speed the body uses to strike the ground is 6.32m/s
Answer:
U = (ε0AV^2) / 2d
Explanation:
Where C= capacitance of the capacitor
ε0= permittivity of free space
A= cross sectional area of plates
d= distance between the plates
V= potential difference
First, the capacitance of a capacitor is obtained by:
C = ε0A/d.
Starting at the formula , U= (CV^2)/2. Formula for energy stored in a capacitor
Substitute in for C:
U = (ε0A/d) * V^2 / 2
Hence:
U = (ε0AV^2) / 2d
A. molecules are CONSTANTLY moving.