Answer:
diagram: see image, x-component: 84.3 N, acceleration: 4.38 m/s^2
Explanation:
(see image for further explanation)
When hockey players push the puck along the ice it slides causing heat which melts the ice causing the friction against the ice to be less.
Newton's three laws of motion can be used to describe the motion of the ice skating.
<h3>Newton's first law of motion</h3>
Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that state unless it is acted upon by an external force.
- Based on this law, once the ice skating starts, it will continue endlessly unless external force stops it.
<h3>Newton's second law of motion</h3>
Newton's second law of motion states that the force applied to an object is directly proportional to the product of mass and acceleration of an object.
- Based on this law, the force applied to the ice skating is equal to the product of mass and acceleration of the ice skating.
<h3>Newton's third law of motion</h3>
This law states that action and reaction are equal and opposite.
- Based on this law, the force applied to the ice skating is equal in magnitude to the reaction of ice.
Learn more about Newton's law here: brainly.com/question/3999427
Answer:


Explanation:
<u>Given Data:</u>
Weight = W = 65 N
Height = h = 2 m
Time = t = 4 secs
<u>Required:</u>
Power = P = ?
Work Done in the form of Potential Energy = P.E. = ?
<u>Formula:</u>
P.E. = Wh
P = P.E. / t
<u>Solution:</u>
P.E. = (65)(2)
P.E = 130 Joules
P = P.E. / t
P = 130 / 4
P = 32.5 Watts
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807 </h3>
The vacuoles because the plant's central vacuole is bigger.