1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dangina [55]
3 years ago
9

A copper part is heated. Does its mass, volume and density change?

Physics
2 answers:
DENIUS [597]3 years ago
6 0

Answer:

It's volume and density will increase but NOT the mass

Explanation:

Heating copper in its elemental form is a physical change.

The mass of any substance does not change during a physical change, so the mass of copper will stay the same. However, its volume will increase, so its density will decrease.

shusha [124]3 years ago
3 0

Answer:

Heating copper in its elemental form is a physical change. The mass of any substance does not change during a physical change, so the mass of copper will stay the same. However, its volume will increase, so its density will decrease

Explanation:

You might be interested in
A 15 kg kangaroo jumps with an upward acceleration of 3 m/s2 by pushing hard off the ground.
patriot [66]

Explanation:

The net force would be upwards since the kangaroo would have to overcome gravity to jump

3 0
3 years ago
Read 2 more answers
X-rays with an energy of 300 keV undergo Compton scattering from a target. If the scattered rays are detected at 30 relative to
lys-0071 [83]

Answer:

a) \Delta \lambda = \lambda' -\lambda_o = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

b) \lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

c) E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

Explanation

Part a

For this case we can use the Compton shift equation given by:

\Delta \lambda = \lambda' -\lambda_0 = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

Part b

For this cas we can calculate the wavelength of the phton with this formula:

\lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

Part c

For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:

E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

3 0
3 years ago
Read 2 more answers
A kite 100 ft above the ground moves horizontally at a speed of 11 ft/s. At what rate is the angle (in radians) between the stri
frutty [35]

Answer:

-2.26×10^-4 radians

Explanation:

The solution involves a right angle triangle

Length is z while the horizontal is the height x

X^2+ 100^2=z^2

Taking the derivatives

2x(dx/dt)=Z^2(dz/dt)

Specific moments = Z= 200 ,X= 100sqrt3 and dx/dt= 11

dz/dt= 1100sqrt3/200 = 9.53

Sin a= 100/a

Taking derivatives in terms of t

Cos a(da/dt)=100/z^2 dz/dt

a= 30°

Cos (30°)da/dt= (-100/40000×9.5)

a= -2.26×10^-4radians

8 0
4 years ago
Read 2 more answers
5)
miskamm [114]
B . I hope this is right
4 0
3 years ago
What type of energy<br> transformation happens in<br> hydro-electric power?
s344n2d4d5 [400]

Answer:

wind power

Explanation:

4 0
3 years ago
Other questions:
  • A car, traveling at , encounters a dip in the road. The radius of curvature at the bottom of the dip is . Each of the car’s four
    11·1 answer
  • Why you sometimes experience a slight shock when getting out of your car​
    7·1 answer
  • An object that has the ability to do work has __________ energy. (4 points)
    12·2 answers
  • A roast turkey is taken from an oven when its temperature has reached 185°F and is placed on a table in a room where the tempera
    8·2 answers
  • Table is in the picture. and will mark brainstest
    7·2 answers
  • A car traveling 85 km/h is 250 m behind a truck<br> traveling 73 km/h.
    6·1 answer
  • Catching a wave, a 77-kg surfer starts with a speed of 1.3 m&gt;s, drops through a height of 1.65 m, and ends with a speed of 8.
    14·1 answer
  • An elevator is rising up a vertical shaft in a skyscraper. Between the 12th and 20th floors, it travels at a constant speed. Dur
    10·1 answer
  • What is the kinetic energy of a 0.5 kg puppy that is running 1.5m/s
    5·1 answer
  • When in orbit, astronauts experience weightlessness. What is this caused by?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!