Answer:
a) 17.086m
b) 0.1671 m
Explanation:
Given data: speed of water through the hose = 1.81 m/s
through the nozzle = 18.3 m/s
We know that maximum height of an object with upward velocity v is given by,
a) H = v^2/2g
where H is the maximum height water emerges
= 18.3^2/(2×9.8) = 17.086 m answer
b) Again,
H = v^2/2g
= 1.81^2/(2×9.8) = 0.1671 m
Answer:
It's centripetal acceleration is 301.7 m/s²
Explanation:
The formula to be used here is that of the centripetal acceleration which is
ac = rω²
where ac is the centripetal acceleration = ?
ω is the angular velocity = 3 revolutions per second is to be converted to radian per second: 3 × 2π = 3 × 2 × 3.14 = 18.84 rad/s
r is the radius = 0.85 m
ac = 0.85 × 18.84²
ac = 301.7 m/s²
It's centripetal acceleration is 301.7 m/s²
Answer:
(A) 3.1 m/s
(B) 2.0 s
Explanation:
At the minimum speed, the force of gravity equals the centripetal force.
mg = m v² / r
v = √(gr)
v = √(9.8 m/s² × 1.0 m)
v = 3.1 m/s
The time is the circumference divided by the speed.
t = (2π × 1.0 m) / (3.1 m/s)
t = 2.0 s
Answer:
New Resistance = 0.5556 ohm
Explanation:
Resistance = resistivity * length /area
Here since resistivity and length are constant, we only need to see how the resistance increases or decreases with change in area.
New Area = pi * (3*D)^2 / 4
Old Area = pi * D^2 / 4
The ratio of new area / old area is :

Since area increases 9 times, and it is inversely proportional to resistance:
Resistance decreases by 9 times.
So, old resistance = Voltage / Current = 10 / 2 = 5 ohm
New Resistance = 5 / 9 = 0.5556 ohm (decreases by 9 times)